Can you solve these geometry problems?

Sdílet
Vložit
  • čas přidán 26. 04. 2024
  • Can you solve these interesting questions?
    0:00 problems
    1:39 solution 1
    6:00 solution 2
    Problem 1 different solution by @AndyMath
    • Tricky Geometry Challenge
    Problem 2
    / 1730904461449785733
    Subscribe: czcams.com/users/MindYour...
    Send me suggestions by email (address at end of many videos). I may not reply but I do consider all ideas!
    If you purchase through these links, I may be compensated for purchases made on Amazon. As an Amazon Associate I earn from qualifying purchases. This does not affect the price you pay.
    If you purchase through these links, I may be compensated for purchases made on Amazon. As an Amazon Associate I earn from qualifying purchases. This does not affect the price you pay.
    Book ratings are from January 2023.
    My Books (worldwide links)
    mindyourdecisions.com/blog/my...
    My Books (US links)
    Mind Your Decisions: Five Book Compilation
    amzn.to/2pbJ4wR
    A collection of 5 books:
    "The Joy of Game Theory" rated 4.3/5 stars on 290 reviews
    amzn.to/1uQvA20
    "The Irrationality Illusion: How To Make Smart Decisions And Overcome Bias" rated 4.1/5 stars on 33 reviews
    amzn.to/1o3FaAg
    "40 Paradoxes in Logic, Probability, and Game Theory" rated 4.2/5 stars on 54 reviews
    amzn.to/1LOCI4U
    "The Best Mental Math Tricks" rated 4.3/5 stars on 116 reviews
    amzn.to/18maAdo
    "Multiply Numbers By Drawing Lines" rated 4.4/5 stars on 37 reviews
    amzn.to/XRm7M4
    Mind Your Puzzles: Collection Of Volumes 1 To 3
    amzn.to/2mMdrJr
    A collection of 3 books:
    "Math Puzzles Volume 1" rated 4.4/5 stars on 112 reviews
    amzn.to/1GhUUSH
    "Math Puzzles Volume 2" rated 4.2/5 stars on 33 reviews
    amzn.to/1NKbyCs
    "Math Puzzles Volume 3" rated 4.2/5 stars on 29 reviews
    amzn.to/1NKbGlp
    2017 Shorty Awards Nominee. Mind Your Decisions was nominated in the STEM category (Science, Technology, Engineering, and Math) along with eventual winner Bill Nye; finalists Adam Savage, Dr. Sandra Lee, Simone Giertz, Tim Peake, Unbox Therapy; and other nominees Elon Musk, Gizmoslip, Hope Jahren, Life Noggin, and Nerdwriter.
    My Blog
    mindyourdecisions.com/blog/
    Twitter
    / preshtalwalkar
    Instagram
    / preshtalwalkar
    Merch
    teespring.com/stores/mind-you...
    Patreon
    / mindyourdecisions
    Press
    mindyourdecisions.com/blog/press
  • Věda a technologie

Komentáře • 115

  • @MindYourDecisions
    @MindYourDecisions  Před 29 dny +10

    For problem 2, @franolich3 sent me an interactive Desmos illustration so you can try it for yourself. Do check it out! Here is the link: www.desmos.com/calculator/3veoetqzgm

  • @morrispearl9981
    @morrispearl9981 Před měsícem +82

    For the second problem. From the statement of the problem, it seemed obvious that (as Professor Talwalkar said at the end of the video) that the length would be an invariant, for any point on the diameter. So take the point being at the center of the circle, and it is obviously an equilateral triangle, with the answer being equal to the length of the radius of the circle.

    • @MindYourDecisions
      @MindYourDecisions  Před měsícem +40

      It's definitely a good way to "find" the answer or to check. (I did say "not the center" to avoid this easy trick ;) I also caution that some problems are just wrongly stated--I get emails about this every week. So if we can prove it is invariant, then we can use this method. But we can't use this idea and assume it's invariant...just a small since the fun is the journey to get the answer, and not necessarily the answer itself! (I'm also not a professor--too many politics in academia, and your career is in the hands of people who may think MindYourDecisions isn't even a math channel).

    • @TheHYPFN
      @TheHYPFN Před měsícem +1

      Commented 2 days ago? How

    • @niloneto1608
      @niloneto1608 Před měsícem +4

      ​@@TheHYPFNHis videos are initially private for his patreons, only made public days later.

    • @verkuilb
      @verkuilb Před měsícem +2

      @@MindYourDecisions​​⁠ If you wanted to take away the easy trick, one way would be to state the problem in a way which makes it appear that x may be variable. “Determine x as a function of the distance of the intersection point from the center of the semicircle” or similar. The trick is only relevant if the problem indicates x is constant. Which, while not explicitly stated, is certainly implied.
      And I think “Professor Talwalkar” was meant as a well-deserved honorary title for all the educating you do here, not that he actually thought that was your profession… 😉

    • @johnjones8580
      @johnjones8580 Před měsícem

      I came to the same conclusion by the way the problem was set up. No matter where the point was picked, the answer would be the same.
      I then forgot the part about not picking the midpoint of diameter and reasoned it would be true from the center and result in an 8-8-8 triangle. Therefore the chord would be 8 from any two points at 60⁰.
      While you can't use that method if the random point is picked for you, between the nature of this channel and the way the problem was set up, a certain level of logic can be inferred and included as additional information to the plain statement of the problem. True, even then it's not foolproof, but the better one knows the opponent, the better shot one has solving their riddles.

  • @NateHays
    @NateHays Před měsícem +8

    For 1 you can do a couple simplifying transforms:
    First, pull out a scaling factor so we can work with easier numbers:
    I set the rectangle as 1k x 2k, and the diameter as 2rk so:
    A = 2k^2
    2rk = 10 => k = 5/r, then
    A = 2(25/r^2) = 50/r^2 (1)
    I can then solve in the scaled system for r using a 1 x 2 rectangle and scale it back to A later.
    Second, pick a coordinate system that yields simple points:
    I shifted the figure so the highest point moves to the origin and then rotated so that we have a circle that passes through the three points {(1,0), (2,0), (0,1)}.
    Let (x, y) be the center then we get three equations:
    r^2 = (1-x)^2 + (0-y)^2 = 1 - 2x + x^2 + y^2 (2)
    r^2 = (2-x)^2 + (0-y)^2 = 4 - 4x + x^2 + y^2 (3)
    r^2 = (0-x)^2 + (1-y)^2 = 1 - 2y + x^2 + y^2 (4)
    Solving this easy system (the squared terms fall out), we find:
    (2) - (3): 0 = 1 - 2x - 4 + 4x = 2x - 3 => x = 3/2
    (2) - (4): 0 = 1 - 2x - 1 + 2y = 2y - 2x => y = x = 3/2
    Plugging x, y into (2):
    r^2 = 1 - 2(3/2) + (3/2)^2 + (3/2)^2 = 5/2
    Plugging r^2 back in to our scaling equation (1),
    A = 50/(5/2) = 20.

  • @antonylawrence7266
    @antonylawrence7266 Před měsícem +2

    Thank you for these wonderful teasers, you make CZcams a pleasure to peruse.

  • @Qermaq
    @Qermaq Před měsícem +14

    Problem 2 - the problem suggests x is always the same. So I put the point all the way onto the circle. This makes it clear that the chord is just one side of an inscribed regular convex hexagon.

    • @fifiwoof1969
      @fifiwoof1969 Před měsícem +1

      I used the centre and got the same answer. Could go SLIGHTLY left/right of the centre and x won't change significantly.

    • @newchannelverygood162
      @newchannelverygood162 Před měsícem +2

      Not only significantly, it shouldn't change anyway.😅

    • @F_A_F123
      @F_A_F123 Před 14 dny +1

      Yea. They should have said that the point is, idk, half the radius away from the center, so you'd have to get that the position doesn't matter and prove it

  • @jeremiahlyleseditor437
    @jeremiahlyleseditor437 Před měsícem +1

    This was informative.
    Great Work

  • @MudithaMath
    @MudithaMath Před měsícem +1

    We can solve problem 2 by using a locus method, i.e. an idea of a moving rod and continuity.
    Rotate a chord AC (congruent to the radius) about the centre O, At any point (during this rotation), if you join A to a point B on the diameter so that the segment AB is inclined at 60 degrees to the diameter. Note that ACBO is cyclic (by noting angle ABO =60 and angle ACO = 60). This shows we have angle ABC = 60 degrees and thus we have the configuration given in problem 2. As you rotate the chord through the circle, you hit every point on the diameter (you need an application of intermediate value theorem and continuity for the construction here). Continuity can be proven by analyzing the steps in a coordinate construction.
    The technique I have described compared to Presh's technique is very similar to the following:
    If f:[0,1] -> [0,1] is given by f(x)=x^2. And the question was to show f(x) = 1/4 has a solution, we can either construct it explicitly as x=1/2 OR we can say f is continuous with f(0)=0 and f(1)=1, so somewhere in between every value from 0 to 1 must be hit. So in particular 1/4 must have been hit. The second method is quite powerful since you just have to check it at convenient points but you need to show continuity.

  • @thesuryaprakashreddy
    @thesuryaprakashreddy Před měsícem +9

    Problem 1 :
    Diagonal(say c) of the Rectangle is the longest side (whose opposite angle is 135 which is formed between sides say a and b) of the triangle which is circumscribed and Circumradius is 5.
    Area of Δ is
    (1/2).a.b.Sin135 = abc/(4.5)
    So c = 10/√2
    If sides are rectangle are x and 2x then diagonal is √5x = 10/√2 and
    Area is 2x² = 2(10/√10)²
    = 20

  • @BytebroUK
    @BytebroUK Před měsícem +1

    That was a good one. I learned stuff from the 2nd one for sure, so this was a 'good day' :)

  • @rogiervankoetsveld741
    @rogiervankoetsveld741 Před měsícem +1

    With the invariance found in problem 2, solving problem 1 is much easier. Shift the bottom left corner to the edge of the circle and find that the diagonal of the rectangle is 10root2, etc

  • @zadeh79
    @zadeh79 Před 10 dny +1

    Though how arrogant of the geometer to assume that such grand ideas await them at such convenience.

  • @Orillians
    @Orillians Před měsícem

    Very nice questions! Learned two things I never knew

  • @darrenhundt
    @darrenhundt Před měsícem

    yes, as people have pointed out, the second problem is trivial. move the point on the diameter to be either the center of the circle or on one of the endpoints of the diameter and the answer pops out!

  • @anayagrawal6550
    @anayagrawal6550 Před měsícem +4

    The angle-chasing part of Problem 2 is a special case of RMO-2023 Problem 2. (a).
    Let be a semicircle with AB as the bounding diameter and let CD be a variable chord of the semicircle of constant length such that CD lie in the interior of the arc AB. Let E be a point on the diameter AB such that CE and DE are equally inclined to the line AB. Prove that the measure of CED is a constant.

  • @batchrocketproject4720
    @batchrocketproject4720 Před měsícem +2

    60deg semi circle problem. As you get to chose the point, the unknown must remain constant for any position of the apex along the diameter. The instruction "except the centre" was simply to prevent examination of the trivial case. Seeing no reason why a relationship should skip only one point along a line length, I took it as a clue, and decided 8cm in my head from that example.

    • @shelleyweiss9920
      @shelleyweiss9920 Před měsícem

      Also works when the chosen point is at the intersection of the diameter and the circumference, Easy to figure in one’s head.

  • @LON009
    @LON009 Před měsícem

    Gotta agree, both problems were really fun to solve 😊

  • @a57989
    @a57989 Před 27 dny

    1:23
    It is not on the center, but you CAN put it on the center, so the value is equal to the radius

  • @brettgbarnes
    @brettgbarnes Před 29 dny

    Problem 1 is super easy to solve with the Intersecting Chords Theorem.
    You could have used either of the 2 chords drawn to solve it.
    r = radius of circle = 5
    Left Chord Equation:
    (x)(x) = (r + 3x)(r - 3x)
    Top Chord Equation:
    (x√2)(x√2) = (r + 2x√2)(r - 2x√2)

  • @Ent229
    @Ent229 Před 13 dny

    For the second problem, we can tell it is an invariant problem from the description, but are told not to pick the easy center point. So pick the other extreme. Choose a point on the circle itself.

  • @CW-yf2kp
    @CW-yf2kp Před měsícem

    I applied the concept from the second problem (that the chord is the same length no matter where the point is on the diameter) to solve the first. Move the point to the middle. Draw the diagonal that is also the chord of the circle. We have a right triangle with two sides = 5 (the radius). Since we have a 45-45-90 right triangle the radius (the length of the chord) must be 5sqrt(2). Thus in the rectangle where we have one side x and the other side 2x, the diagonal of the rectangle (the chord of the circle) is 5sqrt(2). This means that x^2 + (2x)^2 = (5sqrt(2))^2 => 5x^2 = 50 => x^2 = 10 => x=sqrt(10). The two sides are sqrt(10) and 2sqrt(10). Thus the area is sqrt(10)*2sqrt(10) = 20.

  • @Daniel-ef6gg
    @Daniel-ef6gg Před 28 dny

    If they wanted to make the second one seem more difficult, they could have added information, such as the position of the vertex. Knowing that you don't need that information makes the problem seem easier due to the concept of moving the vertex to either the center or exterior of the circle snd solving it there.

  •  Před měsícem

    all respect from Morocco genious Mathematician guy

  • @howareyou4400
    @howareyou4400 Před 29 dny +1

    There is a much easier way to solve Problem 1.
    Consider the chord connecting two vertices of the rectangle (the diagonal line of the rectangle), and the triangle formed by this chord and two radius.
    Prove this triangle is a right angle equilateral triangle (hint: it is 135 degree at the other crossing point from these two vertices)
    From here the problem can be done easily without even using algebra.

  • @januszkaniewski3748
    @januszkaniewski3748 Před 19 dny

    3:06 The crucial fact that the diagonal is horizontal needs proof. Can be done using trigonometry.

  • @1a1u0g9t4s2u
    @1a1u0g9t4s2u Před měsícem

    Problem 2, agree that the point on the diameter may be at any point. Please expand the reason that one of the angles does not become undefined (Zeno's Paradox?) when the point is on the circumference.

  • @jamessanchez3032
    @jamessanchez3032 Před 5 dny

    For Problem 1, I used coordinate geometry. Making the smaller side of the rectangle "x", I made the lowest point where the rectangle intersects the semicircle to be (0,0), and the others (0,x) and (x,2x). I called the origin of the radius (a,b). Knowing that the distances between (a,b) and (0,0), (0,x), and (x,2x) are all 5, you can set up equations and solve for a and b in terms of x. (They are 1.5x and 0.5x.) Then, since (a-0)^2 + (b-0)^2 = 25, plug in x instead and use your solution of x to determine the area of the rectangle.

  • @antomathew926
    @antomathew926 Před měsícem

    Saw the same problem in VDP being solved twice in a day. Cheers

  • @Zivique
    @Zivique Před 26 dny

    For problem 1, since the center of the large circle lies on the smaller circle containing the four corners of the rectangle with center the intersection of the diagonals, we can write 2R^2=AB^2 where AB is the length of the diagonal of the rectangle. Also, since the sides of the rectangle are x and 2x, we have 5x^2=AB^2. Equating the two values, solving for x, and multiplying by 2 (to get a formula for the area) we get that A=2x^2=4/5 R^2 and since R=5, A=20.

  • @hvnterblack
    @hvnterblack Před 22 dny

    nice work

  • @HuguesJacobs-qs7nr
    @HuguesJacobs-qs7nr Před měsícem

    it exists a fairly easy way to solve problem 1:
    we can consider the rectangle as two squares: let's say that square 1 is the square inside the semi circle and square 2 the other square. Say that length of square is x, therefore, the diagonal measures xsqrt(2).
    Consider vertical diagonal of square 1 and horizontal diagonal of square 2 (demonstration is trivial). It is easy to construct the inner square of the semi circle of xsqrt(2) sidelength. Now, notice that horizontal diagonal of square 2 is a circle's cord. Therefore, it is split in the middle by circle's radius (r) that is perpendicular to it and thus parallel to vertical diameter of square 1.
    Now we can construct a rectangle triangle of r as hypothenus and xsqrt(2) and xsqrt(2)/2 as opposit sides. according to pythagorian theorem x² = 2/5r² and 2x² =4/5r² (sanity check: r = 5 ==> 2x² = 20)

  • @roblowery3188
    @roblowery3188 Před 17 dny +1

    Just curious, at the conclusion of #2 you said, "and that's the answer!"
    I just wanted to confirm, that that that [the key] wasn't hanging out...

  • @alwaysEmpty674
    @alwaysEmpty674 Před 29 dny

    problem 1 has a simple solution though it can be problematic to think of it. The line from the bottom corner of the rectangle to the point where the side touches the circle is parallel to the median of the top triangle which also passes through the center of the circle because it is a segment divider. Now the first line can be extended to touch the circle on the other side if a full circle was drawn. A similar line can be drawn on the right side such that it is parallel to the left line and it is trivial that the three lines are parallel (two diagonals of the squares meeting on the circle are perpendicular by Pythagoras theorem). We get an inscribed rectangle and its diagonal passes through the center. It is a rectangle because, for the second segment, we can use the reverse reasoning to show that it is perpendicular to the left line. The diagonal is sqrt(10)x of the starting side of the rectangle. so x is sqrt(10). Hence the area is 20.
    The solution doesn`t require any paper and just 10-20 seconds of thinking.

  • @PedroHenrique-vs3mf
    @PedroHenrique-vs3mf Před 28 dny

    I love how enthusiatic he gets as we get closer to it lmao

  • @selmapolezi7714
    @selmapolezi7714 Před 9 dny

    Tank you

  • @JoaoPedroFernandesMoura
    @JoaoPedroFernandesMoura Před měsícem

    1) First, Call the rectangle ABCD, S.T AB = 2x and AD = x. Then, call M the midpoint of AB.
    Now construct the radii OA and OC, as well as the segments AM and MC. Observe that BMC is an equilateral right triangle; therefore, the angle BMC = 45° and AMC = 135°, so by the inscribed angle theorem, the larger angle AOC = 270° and the smaller angle AOC = 90°. Notice that AC is the hypotenuse of both ABC and AOC; therefore, AC = root(5)*x = 5*root(2). Therefore, x = root(10) and area = 20
    2) First, call the triangle ABC, S.T A is the point within the circle. Construct the radii OB and OC. Notice that the angle BAC = 60°. Now observe that BAC = BOC = 60° because they observe the same circumference arc. Therefore, BOC is an equilateral triangle because, since it's isosceles, its height is also the angle bisector, so tracing the height OM creates two right triangles where MOB = MOC = 30° and MBO = MCO = 60°. Therefore, BC = 8
    Edited for clarity

  • @pellepels50
    @pellepels50 Před 29 dny

    Problem 2:
    If one set the point (that's on the diameter,) to the fare left, then you get a 90, 60,30 triangle with hypotenuse 16, and one get x = 8 on one of the catheter

    • @Harsh_9993
      @Harsh_9993 Před 8 dny

      Can you please elaborate your approach here. CoZ it really seems like that triangle will be 30,60,90° ∆ , although I failed to prove it. So I need your help buddy :) *Please*

  • @zdrastvutye
    @zdrastvutye Před 29 dny

    puzzle number one was posted earlier by "andy math". however concernung puzzle 2 it's remarkable that the result won't depend on what has been chosen for "l3" in line 20:
    10 print "mind your decisions-2 nice geometry puzzles":nu=59
    20 dim x(2),y(2):r=8:l3=r*.57:sw=.1:w1=60:w2=60:l2=sw:goto 40
    30 dl2=2*l2*(r-l3)*cos(rad(w2)):dg=((r-l3)^2+l2^2-dl2)/r^2:dg=dg-1:return
    40 gosub 30
    50 dg1=dg:l21=l2:l2=l2+sw:if l2>10*r then stop
    60 l22=l2:gosub 30:if dg1*dg>0 then 50
    70 l2=(l22+l21)/2:gosub 30:if dg1*dg>0 then l21=l2 else l22=l2
    80 if abs(dg)>1E-10 then 70
    90 l1=sw:goto 120
    100 dl=2*l1*(r-l3)*cos(rad(180-w1)):dg=(l1^2+(r-l3)^2-dl)/r^2:dg=dg-1
    110 return
    120 gosub 100
    130 dg1=dg:l11=l1:l1=l1+sw:if l1>10*r then stop
    140 l12=l1:gosub 100:if dg1*dg>0 then 130
    150 l1=(l11+l12)/2:gosub 100:if dg1*dg>0 then l11=l1 else l12=l1
    160 if abs(dg)>1E-10 then 150
    170 print l1,l2
    180 dlx=2*l1*l2*cos(rad(180-w1-w2)):lx=sqr(l1^2+l2^2-dlx):print "x=";lx
    190 x(0)=l3:y(0)=0:x(1)=l2*cos(rad(w2)):x(1)=x(1)+l3:y(1)=l2*sin(rad(w2)):x(2)=l1*cos(rad(w1))
    200 x(2)=l3-x(2):y(2)=l1*sin(rad(w1)):mass=1E3/2/r:goto 220
    210 xbu=x*mass:ybu=y*mass:return
    220 x=x(0):y=(0):gosub 210:xba=xbu:yba=ybu:for a=1 to 3:ia=a:if ia=3 then ia=0
    230 x=x(ia):y=y(ia):gosub 210:xbn=xbu:ybn=ybu:goto 250
    240 line xba,yba,xbn,ybn:xba=xbn:yba=ybn:return
    250 gosub 240:next a:x=2*r:y=0:gosub 210:xba=xbu:yba=ybu:gcol 9:for a=1 to nu
    260 wa=a/nu*180:x=r*cos(rad(wa)):x=x+r:y=r*sin(rad(wa)):gosub 210:xbn=xbu:ybn=ybu
    270 gosub 240:next a
    mind your decisions-2 nice geometry puzzles
    5.704607739.14460773
    x=8
    >
    run in bbc basic sdl and hit ctrl tab to copy from the results window

  • @btf_flotsam478
    @btf_flotsam478 Před měsícem

    For the first problem (after about 3:50), I would drop a perpendicular from the point on the left, note the side ratios and solve from there.

    • @shaventalz3092
      @shaventalz3092 Před měsícem

      But without going through the steps to prove where that rightmost point is, you don't _know_ that a perpendicular dropped from there will intersect the center of the circle.

    • @btf_flotsam478
      @btf_flotsam478 Před měsícem

      @@shaventalz3092 Sorry, mental typo.

  • @hippophile
    @hippophile Před měsícem

    Second problem is easier, there are other ways to get the answer. But it would be interesting to know if any engineering application has been made of this particular invariant.

  • @zdrastvutye
    @zdrastvutye Před 27 dny

    i have re-created the solution for puzzle#1, just rotate the rectangle so much you can tell the coordinates and then calculate
    3 equations with 3 unknown numbers. finally, the hardest part was the rotation for the graphic display:
    10 print "mind you decisions-2 nice geometry problems":@zoom%=@zoom%*1.4:nu=59
    15 a11=1:a12=1:a13=11:a21=1:a22=-1:a23=0:gosub 50:print xl,yl
    20 dim x(4),y(4):la=1:x1=0:y1=la:x2=la:y2=la:x3=2*la:y3=0
    25 x(0)=0:y(0)=0:x(1)=2*la:y(1)=0:x(2)=x(1):y(2)=la:x(3)=la:y(3)=la:x(4)=0:y(4)=la
    26 xc=x(0):yc=y(0):goto 100
    30 a11=2*(xu2-xu1):a12=2*(yu2-yu1):a13=xu2^2+yu2^2-xu1^2-yu1^2
    40 a21=2*(xu3-xu2):a22=2*(yu3-yu2):a23=xu3^2+yu3^2-xu2^2-yu2^2
    50 ngl1=a12*a21:ngl2=a22*a11
    60 ngl=ngl1-ngl2:if ngl=0 then print "keine loesung":end
    70 zx1=a23*a12:zx2=a13*a22:zx=zx1-zx2
    80 zy1=a13*a21:zy2=a23*a11:zy=zy1-zy2
    90 xl=zx/ngl:yl=zy/ngl:xm=xl:ym=yl:return:rem print "x=";xl;"y=";yl
    100 xu1=x1:yu1=y1:xu2=x2:yu2=y2:xu3=x3:yu3=y3:gosub 30:r=sqr((xu1-xm)^2+(yu1-ym)^2):print r:
    115 rr=sqr((x3-xm)^2+(y3-ym)^2):fe=(1-r/rr)*100:print"der fehler=";fe;"%":rem st0str$err
    120 dim xu(4),yu(4):for a=0 to 4:xu(a)=x(a):yu(a)=y(a):next a
    130 sw=.1:w=sw:goto 190
    140 for au=0 to 4:xvx=(xu(au)-xc)*cos(rad(w)):xvy=(yu(au)-yc)*sin(rad(w)):xv=xvx-xvy+xc
    160 yvx=(xu(au)-xc)*sin(rad(w)):yvy=(yu(au)-yc)*cos(rad(w)):yv=yvx+yvy+yc
    170 x(au)=xv:y(au)=yv:next au:xu1=x(4):yu1=y(4):xu2=x(3):yu2=y(3):xu3=x(1):yu3=y(1)
    180 gosub 30:dg=ym:return
    190 gosub 140
    200 dg1=dg:w1=w:w=w+sw:if w>90 then stop
    210 w2=w:gosub 140:if dg1*dg>0 then 200
    220 w=(w1+w2)/2:gosub 140:if dg1*dg>0 then w1=w else w2=w
    230 if abs(dg)>1E-10 then 220
    240 print w,"%",xm,"%",ym:xmin=xm-r:ymin=0:mass=1E3/2/r:goto 260
    250 xbu=(x-xmin)*mass:ybu=(y-ymin)*mass:return
    260 x=x(0):y=y(0)
    280 gosub 250:xba=xbu:yba=ybu:for a=1 to 5:ia=a:if ia=5 then ia=0
    290 x=x(ia):y=y(ia):gosub 250:xbn=xbu:ybn=ybu:goto 310
    300 line xba,yba,xbn,ybn:xba=xbn:yba=ybn:return
    310 gosub 300:next a:x=xm+r:y=ym:gosub 250:xba=xbu:yba=ybu:gcol 9
    320 for a=1 to nu:wa=a/nu*180:x=r*cos(rad(wa)):x=xm+x:y=r*sin(rad(wa)):gosub 250:xbn=xbu:ybn=ybu
    330 gosub 300:next a
    mind your decisions-2 nice geometry problems
    5.5 5.5
    1.58113883
    der fehler=0%
    45% 0.707106781 % 7.35601263E-11
    >
    run in bbc basic sdl and hit ctrl tab to copy from the results window.

  • @4Ru4__
    @4Ru4__ Před 20 dny

    very interesting... :D

  • @neuralwarp
    @neuralwarp Před měsícem

    Q1 : did I miss the part where you showed the midpoint of the long edge was on the semicircle?

  • @brycenyair6481
    @brycenyair6481 Před měsícem

    For Problem 1, there is a much simpler and more straightforward solution. Draw the vertical diagonal of the lower square and the horizontal diagonal of the upper square. Then draw a line straight down from the rightmost vertex of the original rectangle, perpendicular to the diameter. By simple angle chasing we can see that the three drawn segments and the diameter meet each other at right angles; and since their lengths are the same, they hence form a square inscribed within the semicircle. From here we can do some simple calculations to get area=20

    • @brycenyair6481
      @brycenyair6481 Před měsícem

      (It may seem kind of complex from the lengthiness of my reply but it's actually very straightforward, I just don't know how best to convey it)

    • @alwaysEmpty674
      @alwaysEmpty674 Před 29 dny

      @@brycenyair6481 you haven`t shown that the lines meet at 90, look at my solution above though. I think it proves the solution and the proof is straightforward. My solution is similar but some things are adjusted a bit to show why statements are true.

  • @martinlacher7932
    @martinlacher7932 Před měsícem

    Problem 1: I am wondering about the distance of the point of the rectangle on the diameter of the circle from the center of the circle and the two outer angle at this point of the rectangle with the diameter. Your sketch makes it look like they were both 45°, but I think that's not correct, isn't it? Any solutions to this? Thanks!

  • @pramodsingh7569
    @pramodsingh7569 Před měsícem

    Love from India 🇮🇳

  • @user-hf2ry1wf3t
    @user-hf2ry1wf3t Před měsícem

    I see below that others asked my question and that this is given as a condition of the problem. Now I am trying to determine if this condition were not provided would it be possible to construct a rectangle that satisfies all the other conditions of the problem but no that one

  • @farmitzdugan
    @farmitzdugan Před měsícem +1

    For the first problem, is it always numerically 2 times the diameter? Or was that just a coincidence?

  • @user-hf2ry1wf3t
    @user-hf2ry1wf3t Před měsícem +1

    At 2:20 of the first problem don't you need to show that when dividing in to 2 squares that the midpoint of the top part of the rectangles is in fact also a point on the circle?

  • @battleroyale1760
    @battleroyale1760 Před měsícem

    for the first prblm, how are we assuming that doing the rectangle in half will make it a square?

  • @SinisaKrivokapic
    @SinisaKrivokapic Před měsícem

    1. problem Area(blue rectangle)=20

  • @PsychoSoldierPrometheus
    @PsychoSoldierPrometheus Před měsícem +2

    How do you know that splitting the rectangle in half, will create 2 squares on problem 1?

    • @lantami1199
      @lantami1199 Před měsícem

      Yeah, that's what I'm wondering, too

    • @neuralwarp
      @neuralwarp Před měsícem

      Yeh, me too. And why must the adjacent corners lie on the semicircle?

    • @shashankmaurya1263
      @shashankmaurya1263 Před měsícem +2

      Because adjacent sides will be equal and since it was split using a parallel line,the resulting figure would be a rhombus.But since one angle is 90° it must be a square.

    • @lantami1199
      @lantami1199 Před měsícem

      @@neuralwarp Everything that lies on the semi-circle was given in the question

    • @lantami1199
      @lantami1199 Před měsícem

      @@shashankmaurya1263 But why will adjacent sides be equal? It wasn't mentioned in the question and never got explained in the solution

  • @medielijah
    @medielijah Před měsícem

    Can someone explain 7:28?? Could not follow that part. How do we conclude arc represents 60°??

  • @giancarlo250164
    @giancarlo250164 Před měsícem +2

    I don’t get why the midpoint of the rectangle must be a point of the circumference

    • @sahilsucksatlife
      @sahilsucksatlife Před měsícem +4

      It is a condition given by question

    • @Chameleonit
      @Chameleonit Před měsícem +1

      Somehow I also missed that. But indeed it is there

    • @hughcaldwell1034
      @hughcaldwell1034 Před měsícem

      It is given in the question, though you don't actually need it. I missed it too, and managed to find a solution, though granted it was a little trickier.

  • @user-ud6ui7zt3r
    @user-ud6ui7zt3r Před měsícem

    Problem #2…
    16cos(60degrees)

  • @lavute8243
    @lavute8243 Před měsícem

    Where are u from

  • @WoodyC-fv9hz
    @WoodyC-fv9hz Před 26 dny

    8; (for problem 2); x/sin60 = 8/sin60; x = 8

  • @pyrouscomments
    @pyrouscomments Před měsícem

    3:35 please highlight it. I had to replay it multiple times so I could understand what the heck you were talking about

  • @Happy_Abe
    @Happy_Abe Před 27 dny

    @3:40 why do they meet at a 45 degree angle?

  • @charls2003yeah
    @charls2003yeah Před měsícem

    El primer jugador puede poner la x en 9 posiciones, el segundo en 8, la siguiente jugada del primer jugador habrá 7 posiciones... O sea 9 factorial xd
    Además son menos porque el tablero no debe estar completo para terminar la partida. Sí dividimos entre 4 para rotaciones y entre 2 para reflexiones el número es muchísimo más bajo
    En resumen Alva Mayo no sabe matemáticas

  • @natashok4346
    @natashok4346 Před 27 dny

    Presh, first exercise please change task. Find area of each square. 🐶

  • @davidsousaRJ
    @davidsousaRJ Před měsícem

    I did not understand the move at 7:20 - 7:35, could someone explain?

    • @AshkanMustafa
      @AshkanMustafa Před 21 dnem

      Definition of Inscribed Angle - an inscribed angle in a circle corresponds to half of the respective arc

  • @Rory626
    @Rory626 Před 15 dny

    Referring to an arclength as 60 degrees is nonsensical. Just use radians

  • @femsplainer
    @femsplainer Před měsícem

    This Video on Second problem: Create a triangle that does NOT use the center point of the circle.
    Also This Video on Second Problem: Now redraw the triangle using the center point of the circle...
    🙄🙄🙄🙄

  • @radhekrishnashorts1
    @radhekrishnashorts1 Před měsícem +6

    I am from india love you
    Edit :: just because of one word missing no one is able to understand what i was telling 😅😅😅😅

  • @ronaldbrower5361
    @ronaldbrower5361 Před 26 dny

    Is this cheating: 99+(9-9)!

  • @LaiYou
    @LaiYou Před 29 dny

    I love pizza , 🍕

  • @anastasiapapagianni5472
    @anastasiapapagianni5472 Před měsícem +1

    You took the simplest problem that could be solved by using the sin formula twice and turned it into an ancient Greek tragedy!!! Who are you, my man, Euripides?
    For the love of God....stop!
    I teach these to eighth graders

  • @feralfurballs
    @feralfurballs Před měsícem

    For the first problem i saw an easier solution by "andy math" ... .. also sharing link..
    czcams.com/video/VMiS7G8xqQs/video.htmlfeature=shared