Seven Dimensions

Sdílet
Vložit
  • čas přidán 7. 05. 2024
  • Entry for the 2022 Summer of Maths Exhibition #SoME2.
    Spreadsheet: docs.google.com/spreadsheets/...
    00:00 Intro
    01:15 Pt. 1 - Abstract Spaces
    04:19 Pt. 2 - Doing Linear Algebra To It
    08:46 Pt. 3 - The Planck Units
    12:01 Pt. 4 - Coherence
    13:46 Conclusion
    MUSIC
    Crowander - Dreaming in a Dream
    Crowander - Last Look
    Sorry the audio's not very polished.

Komentáře • 1K

  • @HBMmaster
    @HBMmaster Před rokem +4517

    it's very fun seeing "the seven C's" in a more serious context like this. great explanation of these concepts

    • @teovinokur9362
      @teovinokur9362 Před rokem +142

      woah it's the misali man

    • @y.og.i
      @y.og.i Před rokem +97

      hey it's that guy from the caramelldansen video

    • @andyl.5998
      @andyl.5998 Před rokem +14

      Hi, may I ask what "the seven C's" are? Thx~

    • @U20E0
      @U20E0 Před rokem +21

      @@y.og.i for me, it’s the guy from w

    • @de_g0od
      @de_g0od Před rokem +3

      Its him

  • @lewismassie
    @lewismassie Před rokem +1667

    When I was struggling to memorise all the equations for my exams I realised if I could reverse engineer the positions of the equations from the units I wouldn't have to memorise the actual equations themselves. It wasn't until I had a casual chat in my university lab some years later that I found out it was called Dimensional Analysis.
    This obviously goes a lot deeper than my own brain could come up with (7-dimensional vectors was where you surpassed me) but this was still very interesting

    • @felipevasconcelos6736
      @felipevasconcelos6736 Před rokem +135

      When I was in High School, I used to participate in the national Physics Olympiad. There were always a few questions way beyond what I would have seen in physics class or on my own studies, but thanks to dimensional analysis and calculating areas on a graph there was usually enough time to answer a question from scratch.

    • @chainemusique1792
      @chainemusique1792 Před rokem +12

      you still have to remember the constants

    • @windywinend586
      @windywinend586 Před rokem +36

      @@chainemusique1792 no, constants are always given

    • @felipevasconcelos6736
      @felipevasconcelos6736 Před rokem +70

      @@chainemusique1792 constants are usually either given, or you can answer in terms of the constants. The first option allows people to “cheat” by doing dimensional analysis to answer questions they don’t really understand.

    • @gizatsby
      @gizatsby Před rokem +54

      Yeah this got me through my physics and chemistry classes back in school. The 1/2 in front of the kinetic energy equation got me a few times though haha

  • @tonaxysam
    @tonaxysam Před rokem +917

    Who would have thought that the 7 C's would have a sequel

    • @brainandforce
      @brainandforce Před rokem +192

      Don't you mean a Cquel?

    • @paradox9551
      @paradox9551 Před rokem +36

      Never thought I'd see a jan misali reference here. Toki!

    • @notwithouttext
      @notwithouttext Před rokem +6

      @@paradox9551 toki! sina toki ala toki kepeken toki pona? (hi! do you speak toki pona?)

    • @paradox9551
      @paradox9551 Před rokem +4

      @@notwithouttext toki! mi ken toki e ona!

    • @notwithouttext
      @notwithouttext Před rokem +3

      @@paradox9551 a!

  • @barigamb
    @barigamb Před rokem +881

    This entry is criminally underrated.

    • @RoamingAdhocrat
      @RoamingAdhocrat Před rokem +13

      Every video published on this channel to date is criminally underrated.

    • @1.4142
      @1.4142 Před rokem +10

      @@RoamingAdhocrat This may be the best video he's made, I dare say.

    • @RoamingAdhocrat
      @RoamingAdhocrat Před rokem +4

      @@1.4142 it's certainly in the top 10

    • @gabrieltaylor4150
      @gabrieltaylor4150 Před rokem +2

      It’s underrated but there isn’t really much you do about it. A lot of the topics and ideas he is talking about is things that most people don’t understand unless they have taken college classes on linear algebra or other similar higher level math classes to even understand what’s happening

    • @Sergiuss555
      @Sergiuss555 Před rokem

      It's useless

  • @Pyotyrpyotyrpyotyr
    @Pyotyrpyotyrpyotyr Před rokem +718

    I graduated university for engineering, and this video taught me linear algebra in a more intuitive way than university ever did.

    • @pyropulseIXXI
      @pyropulseIXXI Před rokem +55

      That is quite sad. This video just goes over stuff you could've learned by taking two minutes to read your textbook. I am sad that it takes these, admittedly awesome CZcams videos, to wake people up, when that information is already there if only you were self-motivated

    • @teeletsetse445
      @teeletsetse445 Před rokem +100

      @@pyropulseIXXI You overestimate the textbook's power to explain.

    • @pleaseenteranamelol711
      @pleaseenteranamelol711 Před rokem +27

      We all know that the real purpose of school is not to teach you, or encourage curiosity.

    • @pyropulseIXXI
      @pyropulseIXXI Před rokem +3

      @@pleaseenteranamelol711 Exactly

    • @maya_unplugged
      @maya_unplugged Před rokem

      Me(1): 🤩Oh nice, I’m going to learn something new.
      Me(2): 😳Reading your comment.
      Me(3): 😒ok, I’m out.
      Me(4): 💪🏼hmm. I’m not giving up so easy. Let’s give it a try.
      Me(5): 🤯ok, I’m out.
      Me(6) to myself: I TOLD YA.

  • @UnitaryV
    @UnitaryV Před rokem +726

    The conversion matrix only handles matching dimensions across systems, but not the actual numerical value. However, what if we included the number 10 as an additional "unit"? It seems like that provides the last piece of the puzzle to perform full unit conversions, with the slight drawback that the resulting numbers would be expressed as non-integer powers of 10 (the speed of light becomes 10^8.477m^1s^-1 instead of the usual scientific notation form of 2.998*10^8m/s). Though a little odd at first, it's not wrong. In fact, it's a step up from the matrix at 10:05, which converts the speed of light c to m/s, with nothing indicating the value of 2.998*10^8. By adding an extra row at the bottom for the "unit" 10, containing 8.477 (the log of 2.998*10^8 in base 10) in the first column and appropriate values for the rest, the matrix becomes a bonafide unit converter that converts the numerical values too, instead of just matching the dimensions of the systems. Note that an extra column must also be added on the right for the unit 10, containing five 0's and a 1, so that we end up with a 6×6 invertible matrix.
    imgur.com/a/qMakuIY
    We can also choose to use any number greater than 1 other than 10, but that would change the values in the final row. For example, if we wanted to use e as our additional "unit" instead of 10, we would divide the entire final row (except the 1 in the corner) by log_10(e).

    • @turun_ambartanen
      @turun_ambartanen Před rokem +160

      Very clever idea!
      For what it's worth, there is already a dimensionless number in the base unit system. I have no idea, why anyone would ever want to express results in multiples of 602214076000000000000000, but who am I to judge.

    • @UnitaryV
      @UnitaryV Před rokem +64

      @@turun_ambartanen That's true of SI units, but not Planck units. Still, I'd be lying if I said the thought didn't cross my mind and give me a laugh.
      Edit: Now that I think about it some more, if we left N_A in the SI units instead of omitting it, and simply added 10 to the Planck units, that would be valid too. So the matrix can then convert from units of 10 to units of N_A, allowing you to express c as (N_A)^0.356(m)^1(s)^-1. Now that's what I call obfuscation, lmao.

    • @felipevasconcelos6736
      @felipevasconcelos6736 Před rokem +70

      @@UnitaryV choosing a number as arbitrary as 10 seems counter to the spirit of Planck units. Why not e, so the exponent is just the natural log?

    • @UnitaryV
      @UnitaryV Před rokem +36

      @@felipevasconcelos6736 I agree, which is why I included the bit at the end. For the sake of pedagogy, I decided on using base 10 because log_10(x) can be approximated by a quick mental calculation. That way, you don't have to pull out a calculator to follow along with my explanation. For example,
      log_10(2.998*10^8)=log_10(2.998)+8.
      From this, you can be somewhat comfortable in accepting that 8.477 is log_10(2.998*10^8) without a calculator, since 8≤8.477

    • @foogod4237
      @foogod4237 Před rokem +40

      @@UnitaryV Why not add 10 as the unit for the SI system and e as the unit for the Planck system? It would seem to parallel the differences of most of the other units in the different systems fairly well, IMHO...
      I actually came to the comments specifically hoping to find a thread about this stuff, because adding an 8th dimension to represent the actual quantity seemed like an immediately obvious next step the moment I saw where the video was going. You could then develop a single matrix to represent the complete conversion of any value in one measurement system to the corresponding value (with units) in another, essentially a complete _definition_ of any possible unit system using only math (and some other system as a reference point)...

  • @WaluigiisthekingASmith
    @WaluigiisthekingASmith Před rokem +515

    I actually realized this a while back when I had a physics problem that forgot to give the mass of some object and, since there was a unit of mass in the answer but nothing involving mass was allowed in the answer it was unsolvable. In general this is a really good introduction to the idea of dimensional analysis. Dimensional analysis says that given some set of base quantities trying to derive some other quantity the answer is always the base quantities combined to get the one you want times some function of all of the dimensionless quantities

    • @mathlitmusic3687
      @mathlitmusic3687 Před rokem +1

      How can we add a bit of mass with a bit of time, as in this "vector addition"?
      Wouldn't that contradict the "dimensional analysis" which says you can only add quantities with the same units?
      Or would you ignore dimensional analysis everywhere except when restricted to the "basis" lines? This kind of defeats the purpose of invoking dimensional analysis since that is only of any actual use when we multiply different quantities (like mass times time) not when we are simply adding the same quantity of different magnitude (like 1kg + 2.5 kg)?

    • @v1298
      @v1298 Před rokem +21

      I love reading some advanced anecdote about math and "dimensional analysis" only to look at the profile picture and see Waluigi

    • @Kalobi
      @Kalobi Před rokem +6

      @@mathlitmusic3687 The vector addition in this vector space has nothing to do with the addition of physical values. The elements in the abstract vector space described in the video are things like "time" or "capacitance" or "length^4 divided by amount of substance", not "1s" or "3.5μF"

    • @mathlitmusic3687
      @mathlitmusic3687 Před rokem

      @@Kalobi how can you get (length)^4 in this vector space? Since this vector space has the basis given by those SI units, which point/coordinate do you think will give you length^4?

    • @Kalobi
      @Kalobi Před rokem +7

      @@mathlitmusic3687 length^4 is 4*the length basis vector. Addition in this vector space corresponds to multiplication of physical quantities.

  • @PopeGoliath
    @PopeGoliath Před rokem +310

    This feels like a Part 1, Where part 2 goes on to define a new, mathematically optimal measurement system.

    • @exciton9861
      @exciton9861 Před rokem +81

      Obviously that will be "The seven Cs"

    • @brutusthebear9050
      @brutusthebear9050 Před rokem +9

      There's no such thing. Measurement systems are context-dependent (which is why I defend US Customary, since it includes Metric and imperial, imperial units being better for things on a human scale, requiring less precision).

    • @idontfeelsogood2063
      @idontfeelsogood2063 Před rokem +30

      @@brutusthebear9050 "imperial units being better for things on a human scale, requiring less precision"
      cope x2
      Why 99,9% of the world is using metric? Because it's better in everyday life. You just need to be raised and learn them from youth and you could measure weight, lenght and speed from your own sight/feeling. The thing is, you thinking imperial is better in everyday life is not because it is. It's because you've been raised and become accustomed to using it. Studies show 180° view on that = metric is better. That's why almost only USA is using it, they're medieval units.

    • @brutusthebear9050
      @brutusthebear9050 Před rokem +3

      @@idontfeelsogood2063 Alright. I'll humor you. Cut something into thirds using Metric. What is 1/3 of a meter? And then, cut something into thirds using Customary. What is 1/3 of a foot?
      A third of a meter is a repeating decimal, because Metric uses decimal. A third of a foot is 4 inches, because Customary doesn't use decimal.
      The reason most of the world uses metric isn't because it's inherently better. It's because it looks nice in decimal units and it's more precise. Customary works better on a human scale because it deals with division better. Units in Customary are usually base 12 or 16, which are more intuitive to divide.
      Metric is a system that was designed from the ground up to be a "rational"(istic) measuring system. Customary units are the result of actual human use.
      Also, Americans do learn Metric. Hell, we get taught more with Metric than Customary. If you actually did anything with your hands, you'd see why Customary is superior. But that would require actual effort.

    • @idontfeelsogood2063
      @idontfeelsogood2063 Před rokem +19

      @@brutusthebear9050 I do my "actual" effort everyday, as I'm engineer in production facility in Germany. But I won't discuss it any further, you seem based in imperial=better. No way it would be a civil discussion and I could convince you to the metric. You have been raised with Imperial and doing your best and apparently having success. This doesn't change my mind that metric>imperial. But your career is only limted to USA. Try traveling to Japan or Germany with using imperial. Not possible. Good luck bro.

  • @b43xoit
    @b43xoit Před rokem +149

    "What is the square root of an acre?" is a valid question, having a definite answer, and there might be times when it would be useful to know.

    • @michaelleue7594
      @michaelleue7594 Před rokem +34

      Just to answer the question in case anyone cares to know, it's 66*sqrt(10) feet, or about 208 feet and 8.5 inches.

    • @qwertystop
      @qwertystop Před rokem +68

      Specifically, it answers the question of "what is the side length of a one-acre square of land". This is a less-trivial question than most other units of area would be, because the acre is in the odd position of being a unit of area defined in terms of two unequal side lengths (66 feet by 660 feet). This in turn is because square land parcels are not especially practical in pre-industrial farming: oxen pulling a plow are hard to turn, and 660 feet (a furlong, as in the length of a furrow) is about how far an ox can pull a plow before it needs to rest anyway. An acre is thus about how much plowing you can get done in one day with one ox, but if you got your land allotment (of one day's plowing) as a square, it'd have be smaller. Also, in distribution of a larger agricultural area to many serfs or tenants, it means more people can get a bit of riverbank, a bit of both the sunny and the shady side of the hill, and so on, and thus nobody is stuck only growing one kind of crop.

    • @RoamingAdhocrat
      @RoamingAdhocrat Před rokem +45

      ok but if you have a one-acre field, what crop can you plant which would produce a square root
      perhaps if you inserted some kind of lattice of steel sheets, like a Kallax bookshelf on its side but much smaller, and planted one turnip into each cell…?

    • @scrambledmandible
      @scrambledmandible Před rokem +9

      @@RoamingAdhocrat I bet you were pining to get that one out :p

    • @sponge1234ify
      @sponge1234ify Před rokem +8

      @@RoamingAdhocrat I know this is unrelated, but i just wanna say thank you for giving me a proper name for those square racks/bookshelves. Now i can order one more properly in the future, and not have my books be in awkward Bantex files.

  • @trevormacintosh3939
    @trevormacintosh3939 Před rokem +239

    Wow. That’s such a fascinating concept. I never would have thought of representing units as vectors.

    • @pyropulseIXXI
      @pyropulseIXXI Před rokem +15

      you can represent almost anything as a vector

    • @easports2618
      @easports2618 Před rokem +6

      @@pyropulseIXXI amount of sus moments in a childrens playground?

    • @vrajeshpc
      @vrajeshpc Před rokem +7

      @@easports2618 draw a vector towards the child's age on x axis and initially predicted age on y axis

  • @MaxG628
    @MaxG628 Před rokem +155

    I really like using physics to motivate change of basis. It works a lot better than “I’m going to plot points in the plane using a system other than (1,0) and (0,1) because I hate myself”. At the same time I think I learned something about physics, too.

    • @renhaiyoutube
      @renhaiyoutube Před rokem +4

      In quantum mechanics you encounter change of basis all the time, for example with spin and angular momentum

    • @hanswoast7
      @hanswoast7 Před 11 měsíci +2

      You might find the Fourier Transformation interesting then. It converts between a basis of X to 1/X, p.ex. from time to frequency. And it has wide application within physics and other sciences.

  • @epsilonengineer373
    @epsilonengineer373 Před rokem +4

    First Astronaut: Wait, It's all Linear Algebra???
    Second Astronaut with gun: Always has been.

    • @TheMrSamusic
      @TheMrSamusic Před měsícem

      As a math graduate, I thought excatly so. This is just a trivial video

  • @akeron1an
    @akeron1an Před rokem +118

    I think this was a brilliant video. It really makes you think about vectors in an entirely different way. To me the part about the determinant being 0 implies non-invertability made so much more sense explained through physics units than any previous explanation I had encountered.

    • @mathlitmusic3687
      @mathlitmusic3687 Před rokem +2

      What is described here is merely change of variables (in a system of linear equations), nothing more.

    • @johanngambolputty5351
      @johanngambolputty5351 Před rokem +15

      determinant basically gives you the change in volume elements, being 0 implies a volume can get mapped into a line or point (the result has no volume) and you can't uniquely unfold that back into the original arrangement (i.e. you can't invert that)

    • @Pieter31
      @Pieter31 Před rokem +3

      For more insight on vectors, you should check out 3blue1brown's series "Essence of Linear Algebra"

    • @General12th
      @General12th Před rokem +3

      @@mathlitmusic3687 Are you implying that change of variables in linear algebra is not a brilliant subject?

  • @kallekula84
    @kallekula84 Před rokem +54

    You're very talented at conveying an idea in to a presentation like this and you should continue making more of these!
    Very interesting video and would love to see what's next on your channel!

  • @Libellisth
    @Libellisth Před rokem +68

    What a remarkably concise way to convey a broader insight through this little practical exercise. It really clicked with me. Well done. You're a natural.

  • @jarroddt
    @jarroddt Před rokem +18

    I watched this months ago and vaguley understood, having learnt 3-d vectors and matrix algebra. But now at university, having completed much of my way through the Linear Algebra course, its so cool to see these terms I've learnt come up in a video like this!

    • @tima1639
      @tima1639 Před 3 měsíci

      Exactly the same for me :D

  • @stede9304
    @stede9304 Před rokem +25

    Fascinating. This didn’t make me think of vectors any differently. My math degree trained that out of me. It did allow me to see new & different representations of familiar concepts and units that gave an entirely new perspective on their relationships. And that is very cool.

  • @Beashtman
    @Beashtman Před rokem +54

    Great video, dimensional analysis can be a powerful tool in physics when trying to understand the meaning of an answer with bizzare combinations of units. Being able to see other ways of representing those units could provide some useful insight.

  • @guilhermedamasceno343
    @guilhermedamasceno343 Před rokem +1

    Just found out your channel and I want to congratulate how well you explain the essential, yet advanced concepts. I'm looking forward to see more of your content.

  • @__8120
    @__8120 Před rokem +1

    This is definitely one of the most well presented SoME2 entries I've seen, good job!

  • @IroAppe
    @IroAppe Před rokem +41

    I have a shorter solution for 1:47:
    - Fill B
    - Transfer from B to A
    Now B=2.
    - Empty A
    - Transfer from B to A
    Now A=2.
    - Fill B
    - Transfer from B to A
    Now A=3 and B=4.

    • @guidolongoni
      @guidolongoni Před rokem +6

      Yes, and as a bonus, less water is wasted (3 units instead of 5). I was thinking exactly the same thing.

    • @cknox64
      @cknox64 Před rokem +3

      Still need to empty A so you are left with B=4.

    • @McShavey
      @McShavey Před rokem +3

      - Fill A exactly 1/2 full
      - Fill B exactly 1/2 full
      - Transfer A to B
      😉

    • @sodiboo
      @sodiboo Před 5 měsíci +3

      ​@@McShaveyThere are no markings to get it half full.

  • @bencressman6110
    @bencressman6110 Před rokem +6

    Phenominal video. As someone who dropped out of math before learning calculus and linear algebra, but who loves math, and learning… I can tell you that you made this extremely easy to understand. Engaging, and exciting 10/10

  • @ghkthILAY
    @ghkthILAY Před rokem

    thats a really refreshing point of view, thank you for this video!
    i had some problems with the concept of natural units (specifically in QM combined ED) but seeing it as a change of basis really helps.

  • @quarkup9296
    @quarkup9296 Před rokem +9

    Really interesting and fascinating approach to unit systems. Great outside-of-the-box thinking to be able to use linear algebra in this context and, overall, great video

  • @CasparAddyman
    @CasparAddyman Před rokem +10

    Nicely done, Kieran. And what a brilliant use of the Poincare quote!

  • @bernardlaval6248
    @bernardlaval6248 Před rokem +6

    First time in years YT algorithm works as I would have liked from the beginning. Great video. I've never thought of that. Thank you to have opened my mind today 👌

  • @Korbad
    @Korbad Před rokem +1

    Wow, great video. The way you used the "SI basis" as was really great for visualizing and understanding linear algebra concepts. Thanks!

  • @arttraynor5720
    @arttraynor5720 Před rokem

    Masterful Kieran , I've been noodling with SI units myself as a demonstration to students . I sensed there might be an abstract connection between them ( after much algebraic gymnastics ) but couldn't make the deft leap you have here . Thank you so much for this !

  • @9sven6
    @9sven6 Před rokem +13

    This was surprisingly interesting! Good work

  • @Reydriel
    @Reydriel Před rokem +4

    I knew about both Dimensional Analysis and Linear Algebra, but never thought to put the two together to GREATLY simplify the train of logic of converting between different systems of units. That visual of representing all possible dimensional units as a vector of their powers blew my mind lol

  • @nbtbn
    @nbtbn Před rokem

    Awesome video, and super fascinating to see systems of measurement as sets! As a chemical engineering student who does unit conversions all the time without questioning their existence, this got me genuinely excited and curious, and has permanently changed the way I think about units.

  • @octo-pops
    @octo-pops Před rokem +1

    Oh wow thank you so much for mentioning the seven Cs, they're amazing
    Great video! Always love seeing things like this and best of luck for your channel :)

  • @strangeWaters
    @strangeWaters Před rokem +22

    The things you're working with in this video are usually called "tensors". If a vector is a linear combination of unknowns (1x + 3y + .5z), a tensor is a linear combination of *products* of unknowns (3xy + 5z + 7x^2). (We don't usually think of adding things with different units, but it's just a way to keep track of multiple things at once.)
    What you're doing here is sort of taking the "logarithm" of basis tensors to get vectors ("log" xy²z = x + 2y + z). I bet there's a formal name for this operation, but idk what it is. As you've clearly shown, after taking the log, the result is a vector space. Great video :)

    • @redsix5165
      @redsix5165 Před rokem

      Where can I learn more about tensors the the description of a log…your comment is very understandable but I am not quite there.

    • @bayleev7494
      @bayleev7494 Před rokem +1

      is this right? to use all operations in the tensor algebra, this kind of assumes that any two units can be added together as well as multiplied, which isn't really true (for example mass + time doesn't really make sense).

    • @alxjones
      @alxjones Před rokem +5

      There are a few issues with this.
      (1) The multiplication is commutative here, which is not typical for general tensors. We could call it a symmetric (tensor) algebra, if it weren't for...
      (2) Tensors have a concept of addition, scalar multiplication, and tensor multiplication. Your proposal is that products of dimensions are tensor products, and so the compatible addition here would allow for addition of terms with different units. For example, mass + length would be a valid tensor in this system.
      That 'log' you take note of is actually the isomorphism between the space of dimensions (with multiplication and exponentiation) and Z^7 (with addition and component-wise scaling), both considered as vector spaces over the field of integers Z. Any isomorphism F between these spaces must satisfy
      F(x y^k) = F(x) + k F(y)
      It's common to see something that looks a lot like exp and/or log when looking at morphisms in algebra, but they are just examples of a more general concept.

  • @Seltyk
    @Seltyk Před rokem +9

    This is by far the best SoME2 video I've seen yet. Add in Uniit's comment about the extra column for the number 10, and you've got some delicious linear algebra on your hands.

    • @ReptillianStrike
      @ReptillianStrike Před 4 měsíci

      what is SoME2?

    • @Seltyk
      @Seltyk Před 4 měsíci +1

      @@ReptillianStrike 2nd annual Summer of Math Exposition

    • @ReptillianStrike
      @ReptillianStrike Před 4 měsíci

      @@Seltyk
      Summer of math? What's that?

    • @Seltyk
      @Seltyk Před 4 měsíci +3

      @@ReptillianStrike yearly competition among youtube creators hosted by 3blue1brown to make math explainer videos

    • @ReptillianStrike
      @ReptillianStrike Před 4 měsíci

      @@Seltyk ah ok thank you!
      I was completely out of the loop on this, but still got these videos in my recommended when it was going on lol

  • @paxdriver
    @paxdriver Před rokem

    This channel is absolutely amazing! Great work dude

  • @user-tn4cl5dz1v
    @user-tn4cl5dz1v Před rokem +1

    I have never seen dimension analysis in a effective way like this!!!You are such a genius!!!

  • @brunizzl
    @brunizzl Před rokem +3

    The vectors representing a unit are actually used to represent units inside programming languages. This allows for example to automatically determine what unit the product of two variables with units has: just add their unit vectors.

  • @Yossus
    @Yossus Před rokem +3

    Dimensional Analysis was my favourite part of my physics degree, but I haven't had to do a lot of linear algebra since then. This was basically a solid 15 minutes of me sitting there mouthing "that's so coooooool" over and over

  • @rainbowskyrunner
    @rainbowskyrunner Před rokem

    Thank you for producing this and sharing you thoughts so kindly and concisely. You are awesome 👏🏾 😎

  • @darkside3ng
    @darkside3ng Před rokem

    It's amazing to know that there is someone who knows all these things and can also give such an amazing presentation!!!!

  • @matthewgiallourakis7645
    @matthewgiallourakis7645 Před rokem +14

    I'd love to see a followup of this going over the Buckingham π theorem!

  • @easy_riders
    @easy_riders Před rokem +3

    This is an incredible video! Thank you!

  • @PowerhouseCell
    @PowerhouseCell Před rokem +1

    Amazing!! I can't believe I just found your channel - as a video creator myself, I understand how much time this must have taken. Liked and subscribed 💛

  • @inciaradible7144
    @inciaradible7144 Před rokem +1

    Very fun video; playing around with unit systems can be incredibly useful to see what it is that units really represent. Additionally, I think this is a great lesson in how to apply these fundamental concepts of linear algebra.

  • @dechair3113
    @dechair3113 Před rokem +6

    What an interesting application of linear algebra!

  • @DavidARowland
    @DavidARowland Před rokem +7

    Playing with this recently I became aware that energy and torque have the same units: Length times force. L*F or M*L*T(-2).

    • @LPT4
      @LPT4 Před rokem

      wouldn't L be squared because F is derived from M*L*T^(-2) [m/s^2]

    • @avnishbadoni1393
      @avnishbadoni1393 Před rokem +2

      add a dimension of angle to the other basis. And you'd see the difference.

    • @qdrtytre
      @qdrtytre Před rokem +1

      @@avnishbadoni1393 Angles are dimensionless. Well, that's the party line anyway.

    • @avnishbadoni1393
      @avnishbadoni1393 Před rokem

      @@qdrtytre To those who say this, you can ask if it wouldn't take any force or energy to rotate a 2 tonne wheel on it's axis without changing its x, y or z coordinates. 😁😉

    • @triffid0hunter
      @triffid0hunter Před rokem +1

      Energy is length linear-multiply force, while torque is length 3d-cross-product force - so energy is a real number (ie scalar) while torque is a 3-vector.
      So yeah, the _units_ may be the same, but energy and torque are still different.

  • @bensonprice4027
    @bensonprice4027 Před rokem

    What a great example of adding depth to two seemingly unrelated topics! This has helped expand my understanding of dimensional analysis and linear algebra.

  • @nuparuchi
    @nuparuchi Před rokem

    Lovely video, very clear and concise. Plus, the style and your delivery are quite pleasant. Really great watch

  • @ebentually
    @ebentually Před rokem +4

    What always bother me about the 7 base SI units is why amount of substance is considered a base unit, as that is just a contant to deal with quantities like a dozen or a mega (the prefix to refer to million)
    may there is a fatal flaw i'm overseeing, so if anyone can explain what this flaw is it would be really great

    • @lunam7249
      @lunam7249 Před rokem

      the scientific world confused "quaLity" with "quaNtity".....quaLity = something stuff that different from something else..... quaNtity = the NUMBER of stuff....so time, mass, length are really Qualities.... 12, 3.44657, 287335546.3736 are QUANTITYS...

  • @MCLooyverse
    @MCLooyverse Před rokem +4

    I had this idea a while ago, but never did much with it. It's nice to see it explored.
    Also, every time it comes up, I feel compelled to ridicule the idea of the mole as a unit. It's just a number.

    • @felipevasconcelos6736
      @felipevasconcelos6736 Před rokem

      It’s a bit silly, which’s why in the Seven C’s the unit of “amount of matter” is just “a hundred”. I also think that it’s kind of weird luminous intensity has its own unit.

    • @matj12
      @matj12 Před rokem

      SI defines some counts: kilo, mega and others. Mole (~6×10^23) could be one of them. That would allow that it would be used as a prefix to multiply a unit. The number is similar to yotta (the highest count named by SI) (10^24) in orders of magnitude, and yotta is very rarely used, so mole as a prefix too would be very rarely used. But there are cases where that would be convenient; a moleohm would be a realistic resistance of an insulator. I found that the resistivity of Teflon is around 10^24 ohmmeters.
      In the other direction, mole is used usually only in chemistry. Chemists could completely ignore mole and express amounts of particles in yottas, which wouldn't change the numbers much because mole and yotta are similar.

    • @matj12
      @matj12 Před rokem

      @@felipevasconcelos6736 That luminous intensity has its own unit is not strange. It's independent of other SI units. That the unit is in SI is strange. I expect that SI units are for objective measures. Luminous intensity denotes how bright some light seems to an average human, which is quite subjective IMO.

  • @ThomasValadez-tv
    @ThomasValadez-tv Před rokem

    This is such an elegant video. I feel like this more than anything else has helped me understand the math and theory behind physics.

  • @salmagamal5676
    @salmagamal5676 Před rokem

    This is incredible. Please keep going I would love to see more of your videos

  • @Sandromatic
    @Sandromatic Před rokem +4

    I think a version of this that included scaling factors somehow to allow converting between units and not just different basis systems would be much more useful. Like, the main problem is that you can't just convert between SI and 7C or Plank units because they don't map to the same values. If the scalar value of these vectors *did* map properly then that'd be more useful but the exponents-as-vectors approach is just missing a fundamental part of unit conversion. It will tell you what units you expect to have in your result, yes, but it won't tell you what scaling factor you will have to use in order to actually convert the quantity.

    • @pyropulseIXXI
      @pyropulseIXXI Před rokem

      This is just a dimensional analysis conversion

    • @cmyk8964
      @cmyk8964 Před rokem

      You may be able to derive that with even more linear algebra, but I don’t know hew.

  • @foo0815
    @foo0815 Před rokem +5

    I always found the inclusion of mol as a physical unit questionable. It's just a number without physical meaning.

    • @RuyVuusen
      @RuyVuusen Před rokem +3

      Not really, just like a meter is practically a random length in one dimension, it, too, is a practically random quantity of amount of subtance; both still hold a lot of meaning. What reduces their random nature is that they are derived from universal constants or agreed upon numbers and thus are not subject to change-unlike only defining your mesurements in non-constant concepts such as the human foot or the length of day (both of which evidently can work, but have to be standardized, aka separated from their original definition). In the end, units of measurement are merely a human convention, and for that reason they may as well be random, as long as they are constant and useful to their purpose (which moles are).

    • @taimunozhan
      @taimunozhan Před rokem +3

      @@RuyVuusen The problem with mol is not that its value is arbitrary (which all units ultimately are, natural units included) but that it really doesn't express any physical quantity that would even require units to be measured. Meters, feet, or whatever crazy length unit one might conjure will too have an arbitrary value but they will reference the physical concept of length; the number is coupled with a certain physical feature. For mol, there's only a number; it has more in common with the prefixes like kilo- and micro- than with any of the proper units.
      There are far better candidates for a linearly independent seventh dimension. Angle is often brought up in this context, with the radian sometimes being mentioned as a base SI unit. I believe there is a fairly good case for information (measured in bits, bytes or other quirkier units like nats) to be treated as another dimension to incorporate into a metric system as well.

    • @Anonymous-df8it
      @Anonymous-df8it Před rokem +1

      @@taimunozhan Don't obsess over inaccuracies. He's probably American lol

  • @oceannuclear
    @oceannuclear Před rokem

    This is ridiculous... I love it. I'd think people who think about units in such depth and people who are familiar with the axioms of vector spaces are mutually exclusive. You have proved me wrong.
    Also I love your outro music and concluding remark + quote. It makes the video beautiful :)

  • @broken_radar
    @broken_radar Před rokem

    This is an amazing video. This explains me things I have been thinking about and I think there are larger implications for this. Thank you!

  • @guidosalescalvano9862
    @guidosalescalvano9862 Před rokem +5

    I wish you had derived the eigenvectors of unit space. I.e. what is a coherent system for expressing all of physics?

    • @aboprivatkanal2493
      @aboprivatkanal2493 Před rokem

      What

    • @zokalyx
      @zokalyx Před rokem

      what do you mean? the 7 base SI units are coherent and can be used for all magnitudes in physics.

    • @guidosalescalvano9862
      @guidosalescalvano9862 Před rokem +1

      @@zokalyx But are they the minimal vectors to span unit space? i.e. are they orthogonal?

    • @MrAlRats
      @MrAlRats Před rokem

      The mass, energy, and momentum of any physical system are related to each other by the formula m² = E² - p² (in any system of units where the speed of light is dimensionless). So, they can be measured using the same units. The energy of a system is also proportional to the frequency associated with the wave nature of the system, so all these quantities can be measured using units of the frequency.
      There should only be two base units: The second, s, and the electronic charge, e. Lengths and time intervals should be measured in seconds. Mass, energy, frequency, momentum, acceleration, and temperature should be measured in units of the reciprocal of the second, s⁻¹. Pressure and density should be measured in units of s⁻⁴. Speed, entropy, and angular momentum should be dimensionless. Capacitance should be measured in units of e²s. Voltage should be measured in units of e⁻¹s⁻¹. The electric current in units of es⁻¹. All the fundamental constants disappear in this system of units. The size of the second is arbitrary and so can be adjusted for convenience.

  • @robheusd
    @robheusd Před rokem +6

    Why is luminous intensity a fundamental unit, isn't it expressable as amount of energy per second per area (square length)?

    • @KieranBorovac
      @KieranBorovac  Před rokem +6

      Intensity is indeed measured in W/m^2, but 'luminous intensity' is not technically the same thing - it's a special unit that measures brightness as perceived by human eyes, which is more complicated than just 'radiant power per unit area' because vision is complicated. (I recommend searching 'photometry' for a more detailed explanation.)

    • @enderyu
      @enderyu Před rokem +1

      @@KieranBorovac but including the mole is still a bad idea, right? Its just a pure number, so you can represent 1 m as (6x10^23)^-1 m*mol or even (6x10^23)^-2 m*mol^2

    • @zokalyx
      @zokalyx Před rokem

      @@enderyu I kinda feel the same thing, but at the same time, a mole is a really relevant number in chemistry that we would benefit a lot from knowing precisely.

  • @vorpal22
    @vorpal22 Před rokem

    Fascinating video. I had never thought of using linear algebra and change of bases units to go from one set of units to another!
    Now it seems so natural and obvious.

  • @sebastiandierks7919
    @sebastiandierks7919 Před rokem +3

    Nice video :) I was honestly very sceptical when I saw the thumbnail as in relativity, mass is explicitly NOT a vector, but a Lorentz scalar, the norm of the energy-momentum 4-vector. I also thought about mass distributions, where mass would however still be a scalar field on spacetime. I then thought about the inertia tensor of rigid bodies, but then "mass" would be a second order tensor, not first order. Anyway, I had to click to find out what the video was about and would not have guessed a video on unit systems!
    I also have a question as I'm not familiar with coherence of unit systems: So the SI-system would then actually not be coherent right? As the mol and candela are redundant? mol measures the amount of substance, which can be expressed as the amount of atoms/molecules, which is a dimensionless number, which is equivalent to the 0-vector. So (0,0,0,0,0,0,0) and (0,0,0,0,0,1,0) would represent the same unit? Or is that wrong, as in this argument I considered the Avogadro constant to be a known constant, similarly to how you assume to know the speed of light, Planck's constant and the gravitational constant to be known and fixed in Planck units? Also what about natural units with c=hbar=1, where length and time (for example) have both the same unit of GeV^-1? What does that mean in the context of this video?
    I think one actually only needs 1 unit and set a bunch of natural constants to 1 (which is however like picking another unit maybe?). E.g. pick the second as your one basic unit of time and express length = speed of light * time, i.e. express length in (light)seconds etc. All physical quantities can then just be measured in powers of the second. Otherwise, who says there should be 7, or 5, or whatever arbitrary amount of basic units?

    • @MrAlRats
      @MrAlRats Před rokem

      The mass, energy, and momentum of any physical system are related to each other by the formula m² = E² - p² (in any system of units where the speed of light is dimensionless). So, they can be measured using the same units. The energy of a system is also proportional to the frequency associated with the wave nature of the system, so all these quantities can be measured using units of the frequency.
      There should only be two base units: The second, s, and the electronic charge, e. Lengths and time intervals should be measured in seconds. Mass, energy, frequency, momentum, acceleration, and temperature should be measured in units of the reciprocal of the second, s⁻¹. Pressure and density should be measured in units of s⁻⁴. Speed, entropy, and angular momentum should be dimensionless. Capacitance should be measured in units of e²s. Voltage should be measured in units of e⁻¹s⁻¹. The electric current in units of es⁻¹. All the fundamental constants disappear in this system of units. The size of the second is arbitrary and so can be adjusted for convenience.

    • @98danielray
      @98danielray Před rokem

      it is not the zero vector, no

    • @sebastiandierks7919
      @sebastiandierks7919 Před rokem

      @@MrAlRats Are you sure you could not also relate time and charge by an equation/an experimental setup and measure charge in a certain power of seconds? Why use two base units? It's just as arbitrary as 5 or 7 in the video. Also, you could set e=1, as you set c, hbar, k_B, G = 1 in other unit systems. Although setting a natural constant to 1 is the same as picking a dimensionful constant, you again choose a unit to measure in, it's just not introducing an additional physical dimension.

    • @MrAlRats
      @MrAlRats Před rokem +1

      @@sebastiandierks7919 It's the discovery of relationships between different quantities due to various developments in the history of physics (such as statistical mechanics, relativity, quantum mechanics) that has allowed the number of base units to be reduced to just two. The best we can currently do is to devise a system of units with two dimensions (Time [T] and Electric charge [Q] ), with one base unit associated with each dimension - the second,s, and the electronic charge, e. All other measurement units can be expressed as some integer powers of these two base units multiplied together. Until some deeper connection is known between these quantities I think we will need at least two base units. Perhaps we'll have to wait for a theory of quantum gravity or theory of everything and then maybe everything could be measured in qubits of information or something.

    • @adamrezabek9469
      @adamrezabek9469 Před rokem

      Yeah, mol is wird. It should not be an unit. And if we want to treat it like a unit, we have to forget that it's actually just shortcut for writing 6,022E23 and treat it as a unit.

  • @M_1024
    @M_1024 Před rokem +5

    mol is not a unit, mol is a number, so in Planck units it will be 1

  • @leftyrighter8662
    @leftyrighter8662 Před rokem

    Thanks for the simplified explanation. I always wondered what matrix multiplication would do in a real scenario.

  • @mt2aod
    @mt2aod Před rokem

    Amazing, thought-provoking video.
    This very relevant to my field of study 'changing basis units in general relativity'. It's enjoyable to see your perspective.

  • @elliotderbyshire5859
    @elliotderbyshire5859 Před rokem +3

    This is a cool video

  • @ClementinesmWTF
    @ClementinesmWTF Před rokem +3

    I’m so happy someone has put into words and good visuals what I’ve always thought. And I’m even happier you used janMisali in your examples.
    This has always been something that bothered me in the field of metrology and SI (especially when it comes to SI “supremacists”). There truly is no “true” measurement system and all systems can be equally expressed as all others. Sure, some might have some other nice properties (eg base-10 or human-scale-ness), but even those are arbitrary to some extent unless you’re using natural systems. And even then, metric’s base-10ness isn’t even that good from a mathematical standpoint…2x5?
    It’s cool to have a standardized system, but for people who trash on Customary, they shouldn’t for a second think their system is any less arbitrary.
    *meters are based on the distance from the North Pole to the equator thru Paris, seconds are based on Cesium atoms, and temperature isn’t even based on an atom, but a molecule (H2O), and even then the definition isn’t 0° like most people think it is (don’t even get me started on relative vs absolute temps). The SI definitions have changed over time to become less subjective, sure, but the current definitions are just “more exact subjectiveness” when it comes to that.
    There’s more than just those, but it makes the point and I still love this video so much for showing how subjective most metrological systems are

    • @mathlitmusic3687
      @mathlitmusic3687 Před rokem +4

      SI isn't a superior system of units, in the sense that any "system of unit" is equivalent to it- it's just more convenient for our use.
      The great thing about it is suitable for science, because it is designed according to the decimal system (kilometers, kilograms, kiloJoules, nanometer, nanojoules, nanogram etc are easily understood by knowing what kilo or nano means as 10^x) which is way better than the stone age measurement systems like yards, feet, inches, score, stones, etc, which were designed by primitive people for a largely primitive, non-scientific world.

    • @KnTenshi2
      @KnTenshi2 Před rokem

      @@mathlitmusic3687 Those are only intuitive if you already know (or are taught) that kilo means 10^3 and nano means 10^-9. What about Lahk? Or a Pak?

    • @mathlitmusic3687
      @mathlitmusic3687 Před rokem +1

      @@KnTenshi2 Once you know what "kilo" means then you can use it for any quantity that's the difference- kilolitres, kilometres, kilometres, kilojoules, etc any quantity can have a kilo of that. But other archaic systems are quantity specific- like inch or feet has no meaning when we are talking about mass. That's the essential difference.
      Of course, another convenience is that it's always 10^x which is easier in conversions, than the 12 inches = 1 feet , or 1 score = 20 years or whatever..

    • @felipevasconcelos6736
      @felipevasconcelos6736 Před rokem +2

      @@KnTenshi2 that’s how numbers in general work. No one is born knowing that “thousand” means 10^3, so we’re taught that. Learning numbers is so easy a child can do it, though, so everyone learning a new (very limited) set of numbers isn’t a big deal. It’s “intuitive” because, if you know units or length, that knowledge is immediately transferable to units of mass, for example.

    • @felipevasconcelos6736
      @felipevasconcelos6736 Před rokem +2

      Seconds aren’t really based on Cesium atoms. They were redefined that way, but only to match the earlier definition as well as possible, and the earlier definition was that one day had 24*60*60 seconds, for no reason other than the the Babylonians liked 60.

  • @dhruv4028
    @dhruv4028 Před rokem +2

    This guy has one video and it is an absolute banger. Waiting for more content from you

  • @amkessel2014
    @amkessel2014 Před rokem

    Excellent video! Clear and cogent. Looking forward to future content.

  • @aidenm.893
    @aidenm.893 Před rokem +1

    *Super* straightforward. Thank you. I don't even have a degree, but I follow you the whole way.

  • @BleachWizz
    @BleachWizz Před rokem +1

    I like this way of thinking, it feels so intuitive

  • @etdr
    @etdr Před 4 měsíci

    This video is just breathtaking. Just a masterwork of thinking outside the bun

  • @cassiopeiasfire6457
    @cassiopeiasfire6457 Před rokem

    The conclusion is one of the best descriptions of what math *is* that I've heard.

  • @PlaneShaper2
    @PlaneShaper2 Před rokem

    What an elegant video on this topic! One of my physics professors was absolutely a fan of using Energy as one of his base units. We were allowed exactly one page of notes and the text book during exams in my first year college physics course two decades ago, and a representation of this constituted my notes.
    Really, Part 1 of this video ought to be shown to every high school physics student, part 2 to every first year physics college student, and parts 3 and 4 to every second year student.

  • @Maazin5
    @Maazin5 Před rokem

    This is really cool. I struggled with Linear Algebra in school and this video connected a lot of gaps I had about my understanding 👍🏾

  • @lonestarr1490
    @lonestarr1490 Před rokem

    _That_ was a debut video? Damn... Talking about "start as you mean to go on".
    I'll definitely stay tuned for more.

  • @robinwang6399
    @robinwang6399 Před 5 měsíci

    This is very interesting, I have never thought of units this way, nor applied vectors in ways other than the usual physical computations. You video have opened a door to me in representing things in maths, making it easier for me to try to understand the world around me.

  • @ChrisWalshZX
    @ChrisWalshZX Před 11 měsíci

    Wow! That was amazing. Something absolutely new here for me. Thanks.

  • @nikolajgylling4651
    @nikolajgylling4651 Před rokem

    This remains one of the best videos I have seen on CZcams!

  • @gumbilicious1
    @gumbilicious1 Před rokem

    This is an incredibly brilliant and enlightening observation. I don’t know if this is an original idea or not, but thank you presenting it

  • @nevyn
    @nevyn Před rokem

    I love linear algebra, and seeing it applied in this novel fashion is just so delightful that I'm giggling as I'm watching it!

  • @haraldhuber3734
    @haraldhuber3734 Před rokem

    Dimensionsanalyse!
    Sehr schön gemacht, vor allem die Transformations-matrix aus der 8. Minute bereitet mir von nun an bestimmt noch häufiger freude :D
    Danke vielmals, und beste Grüße aus Wien.
    Peace, Love and Tschaka laka la!

  • @agranero6
    @agranero6 Před rokem +2

    I read an article about that about 30 years ago (Natural Units via Linear Algebra, American Journal of Physics). Basically, this works because a vector space can be made with the vector set being the set of real numbers, the scalar set being the set o real numbers too (nothing forbids that) and the multiplication of a vector by a scalar is the operation of elevating the vector "number" to the scalar "number". All vector space conditions hold (as the exponentiation is to the multiplication what multiplication is to addition in terms of distributivity). The only condition is that the base conversion matrix is nonsingular. For the same reason if you take natural numbers instead the prime numbers form a base of natural numbers which is a vector space way to express the fundamental theorem of arithmetic.

  • @King_Imani
    @King_Imani Před rokem

    This is by far the best thing I have seen on CZcams

  • @nimnim5149
    @nimnim5149 Před rokem +1

    Really fun to watch and very informative... I'm sure this is going to be in one of top picks by Grant Sanderson .

  • @yash1152
    @yash1152 Před rokem +1

    1:14 3-5L jar problem as coordinates on a grid
    1:58 pendulum's state space - i've seen that several times before
    4:47 we now need to make sure that basic ops of LA are meaningfull
    5:13 axioms of linear algebra and their corresponding meaning
    7:09 change of basis in square matrix
    (with annotations of each vector)

  • @scaredyfish
    @scaredyfish Před rokem +2

    I’ve often thought how handy it would be to have a spreadsheet that is aware of units and can convert between them at will. I think this concept could be quite useful in implementing something like that.

  • @evanmarshall322
    @evanmarshall322 Před rokem

    I’m honestly super disappointed that this is the only video on the channel. Definitely subscribing AND (for once) ringing the bell.

  • @rktiwa
    @rktiwa Před rokem

    It's deeper than it seems. It gives wings to your imagination. Thanks

  • @Ayeloo
    @Ayeloo Před rokem

    Despite me hating physics and mostly watching videos like these fo the entertainment value, and having no expectations coming in for such an abstract topic, I ended up coming out with a much more meaningful understanding of linear algebra from this than I did from the 4 months I spent on a college course for it, so thanks :)
    Great video

  • @Zaneclodon
    @Zaneclodon Před rokem +1

    great video! i love thinking about units and this video brought that together with linear algebra to show how to think about them in a whole new way!
    minor correction at 11:11: the vector displayed for capacitance in Planck units is incorrect, but the spreadsheet correctly lists it as (-1.5, 0.5, 0.5, 1, 0)ᵀ.

  • @LydellAaron
    @LydellAaron Před rokem

    This is so awesome! This helped me in a very practical way.

  • @JohnSmall314
    @JohnSmall314 Před rokem

    Only one video so far!
    I'm looking forward to more. If you keep up this standard you're going to be a star.

  • @brucedickson6019
    @brucedickson6019 Před rokem

    This is fascinating. I've used Nastran since the early 90's. One of the impediments to effective finite element analysis is learning to pick a set of units that inherently consistent. Ideally, the units should be selected so that quantities describing your model are in he range [0.1, 10] . You're then faced with the challenge of interpreting the results correctly. This idea makes the process easy.

  • @vivekdabholkar5965
    @vivekdabholkar5965 Před 4 měsíci

    Awesome video! Very insightful, thoroughly enjoyed the power of Linear Algebra.

  • @tima1639
    @tima1639 Před 3 měsíci

    loved this! On Wednesday i am writing my linear algebra I exam and its so refreshing to understand these concepts of linear algebra, which i would have not understood before
    So insightful, thank you!

  • @XDjester
    @XDjester Před rokem

    Thank you for your future contribution to VR programming. I'll be certain to use this.

  • @generalaswalter5394
    @generalaswalter5394 Před 10 měsíci +1

    SoMe is one of the best things than happened to education industry, there are so many new channels with videos marching the quality of channels with a hired crew, so interesting.

  • @Number_Cruncher
    @Number_Cruncher Před rokem +1

    Nicely done. So units will never be an issue again.

  • @pra.
    @pra. Před rokem +2

    Applying linear algebra to S/I units is so cool. This made me happy

  • @loganfisher3138
    @loganfisher3138 Před rokem +2

    One note regarding Planck units: we can reasonably consider the Planck version of candelas to just be in units of power, and we just drop "mol" and treat it as a pure number instead. If you want to try something fun: figure out how units of information are represented in Planck units. Hint: Bekenstein bound.

  • @Kinqsly
    @Kinqsly Před 11 měsíci

    I’ve been putting this video off for awhile, thanks again! Great work. 12:51