Age-associated Gene Expression Changes in Mouse Sweat Glands | Aging-US

Sdílet
Vložit
  • čas přidán 15. 06. 2024
  • Dr. Chang-Yi Cui and Alexandra G. Zonnefeld from the Laboratory of Genetics and Genomics, National Institute on Aging in Baltimore, MD, discuss a research paper they co-authored that was published by Aging (Aging-US) in Volume 16, Issue 8, entitled, “Characterization of age-associated gene expression changes in mouse sweat glands.” ‪@NIHAging‬
    #authors #interview #authorinterview #aging #research #openaccess #openscience #peerreview #journal #publication #publishing #meded
    DOI - doi.org/10.18632/aging.205776
    Corresponding authors - Chang-Yi Cui - cuic@mail.nih.gov, and Myriam Gorospe - gorospem@grc.nia.nih.gov
    Video transcription - aging-us.net/2024/05/11/behin...
    Video abstract - • Characterization of Ag...
    Abstract
    Evaporation of sweat on the skin surface is the major mechanism for dissipating heat in humans. The secretory capacity of sweat glands (SWGs) declines during aging, leading to heat intolerance in the elderly, but the mechanisms responsible for this decline are poorly understood. We investigated the molecular changes accompanying SWG aging in mice, where sweat tests confirmed a significant reduction of active SWGs in old mice relative to young mice. We first identified SWG-enriched mRNAs by comparing the skin transcriptome of Eda mutant Tabby male mice, which lack SWGs, with that of wild-type control mice by RNA-sequencing analysis. This comparison revealed 171 mRNAs enriched in SWGs, including 47 mRNAs encoding ‘core secretory’ proteins such as transcription factors, ion channels, ion transporters, and trans-synaptic signaling proteins. Among these, 28 SWG-enriched mRNAs showed significantly altered abundance in the aged male footpad skin, and 11 of them, including Foxa1, Best2, Chrm3, and Foxc1 mRNAs, were found in the ‘core secretory’ category. Consistent with the changes in mRNA expression levels, immunohistology revealed that higher numbers of secretory cells from old SWGs express the transcription factor FOXC1, the protein product of Foxc1 mRNA. In sum, our study identified mRNAs enriched in SWGs, including those that encode core secretory proteins, and altered abundance of these mRNAs and proteins with aging in mouse SWGs.
    Sign up for free Altmetric alerts about this article -
    aging.altmetric.com/details/e...
    Subscribe for free publication alerts from Aging - www.aging-us.com/subscribe-to...
    Keywords - aging, FOXA1, BEST2, FOXC1, ectodysplasin/Eda, Tabby
    About Aging-US
    Aging publishes research papers in all fields of aging research including but not limited, aging from yeast to mammals, cellular senescence, age-related diseases such as cancer and Alzheimer’s diseases and their prevention and treatment, anti-aging strategies and drug development and especially the role of signal transduction pathways such as mTOR in aging and potential approaches to modulate these signaling pathways to extend lifespan. The journal aims to promote treatment of age-related diseases by slowing down aging, validation of anti-aging drugs by treating age-related diseases, prevention of cancer by inhibiting aging. Cancer and COVID-19 are age-related diseases.
    Aging is indexed by PubMed/Medline (abbreviated as “Aging (Albany NY)”), PubMed Central, Web of Science: Science Citation Index Expanded (abbreviated as “Aging‐US” and listed in the Cell Biology and Geriatrics & Gerontology categories), Scopus (abbreviated as “Aging” and listed in the Cell Biology and Aging categories), Biological Abstracts, BIOSIS Previews, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science).
    Please visit our website at www.Aging-US.com​​ and connect with us:
    SoundCloud - / aging-us
    Facebook - / agingus
    X - / agingjrnl
    Instagram - / agingjrnl
    CZcams - / @agingjournal
    LinkedIn - / aging
    Pinterest - / agingus
    Media Contact
    18009220957
    MEDIA@IMPACTJOURNALS.COM
  • Věda a technologie

Komentáře • 1

  • @afsanaakther2173
    @afsanaakther2173 Před měsícem +1

    This study explores age-related gene expression changes in mouse sweat glands, shedding light on aging processes.