Is the weak nuclear force really a force?

Sdílet
Vložit
  • čas přidán 9. 05. 2024
  • The weak nuclear force is often said to be the cause of some forms of radioactivity, but is it a force in the traditional sense? In this video, Fermilab's Dr. Don gives us a deeper dive into how the weak force works. It's a mind-blowing interaction in the subatomic world.
    Fermilab physics 101:
    www.fnal.gov/pub/science/part...
    Fermilab home page:
    fnal.gov
  • Věda a technologie

Komentáře • 943

  • @whatdamath
    @whatdamath Před 10 měsíci +185

    this is great! I'll be referencing this video when I need to cut corners with the weak force from now on

  • @calmeilles
    @calmeilles Před 10 měsíci +273

    The "deeper dives" into these subjects are always the most fascinating. I'd like to see more.

    • @causewaykayak
      @causewaykayak Před 10 měsíci +7

      i second that wholeheartedly .

    • @KnightsWithoutATable
      @KnightsWithoutATable Před 10 měsíci +5

      @@causewaykayak I vote Aye on this motion

    • @UQuark0
      @UQuark0 Před 10 měsíci +5

      It's funny how this 'no one wants technicalities on teh internets' idea still exists. Nothing is too technical - more or less every level can be explained in an interesting and entertaining form

    • @causewaykayak
      @causewaykayak Před 10 měsíci +1

      Very true

    • @causewaykayak
      @causewaykayak Před 10 měsíci

      @@simonebest6013 Simone (?) you have Split an Infinitive which is a class of Sin entirely in its own category. To pay for this gross atrocity - when the sun vanishes instantly in compliance with your wishes - You wont be allowed to witness the event 👇🏿 so never be quite sure .... sorry about that but it's your own fault.

  • @GabrielGABFonseca
    @GabrielGABFonseca Před 10 měsíci +120

    Honestly, I would genuinely appreciate a longer video going more in-depth about the Weak Force.

    • @lucasmcguire1554
      @lucasmcguire1554 Před 3 měsíci +5

      PBS spacetime has a few good videos on the topic, although they are not easy to grasp and they give you an idea on why this stuff is so notoriously difficult to understand properly.

    • @morninggloryvisuals
      @morninggloryvisuals Před 5 dny

      I second that.

  • @KafkaExMachina
    @KafkaExMachina Před 10 měsíci +164

    Now I am extremely intrigued to know how the electroweak force was discovered and what the combination of the two forces as actually the same force means when talking about particle interactions.

    • @moocowpong1
      @moocowpong1 Před 10 měsíci +15

      It’s a wild picture, much weirder than you might initially think. I’d love to see a video covering it.

    • @MrREX-sy4rz
      @MrREX-sy4rz Před 10 měsíci +6

      Make a video on quantum physics pls vote.... 😢

    • @london8732
      @london8732 Před 10 měsíci

      ​@@moocowpong1
      PBS Space-time Electroweak theory video:
      czcams.com/video/qKVpknSKgE0/video.html

    • @RealMajor66
      @RealMajor66 Před 10 měsíci

      +1 🙂

    • @michaelsommers2356
      @michaelsommers2356 Před 10 měsíci +5

      It means that at extremely high energies, there is only one electroweak force, not separate electrical, magnetic, and weak forces. Which I guess many not be very helpful, but that's it.

  • @COTU9
    @COTU9 Před 10 měsíci +59

    The other weak force you don't hear physicist's mention is the Bar force. It's supposed to keep me from picking up a candy bar when I'm trying to lose weight. It rarely shows up but when it does, it has to be pretty strong to work.

    • @rreiter
      @rreiter Před 10 měsíci +7

      They also have yet to explain why skittles occur in a short burst of high frequency. There must be more than the weak force at play here... and how do they account for all the red ones?

  • @mrtienphysics666
    @mrtienphysics666 Před 10 měsíci +38

    Thanks Don, you are an expert who can explain. Very rare on the internet.

  • @Mysoi123
    @Mysoi123 Před 10 měsíci +89

    For those still puzzled by the concept of mass uncertainty, the Heisenberg uncertainty principle states that the duration in time and uncertainty in a particle's energy are connected through a constant, ΔE Δt ≥ ħ/2. Additionally, as Einstein demonstrated with his famous equation E=mc², mass can be understood as a measurement of energy. Consequently, mass also carries inherent uncertainty.
    This implies that the shorter a particle's lifespan, the wider the spread of its probability function becomes. Considering the weak boson particles, which decay rapidly, their mass also becomes probabilistic. Interestingly, even photons, conventionally regarded as massless, can exhibit mass if they engage in an interaction involving highly energetic photons that decay into a pair of matter and antimatter electrons. Thus, the transient photon, although typically short-lived, may acquire mass due to the inherent uncertainty.

    • @Posesso
      @Posesso Před 10 měsíci +7

      Thanks! Extremely convenient to add imo

    • @HellopeepsStavros
      @HellopeepsStavros Před 10 měsíci +8

      Sounds right, i always thought that there was more to the photon that met the eye. ! hahahhaaa

    • @LadyAnuB
      @LadyAnuB Před 10 měsíci +3

      A photon is massless when it comes to special relativity but it has energy when it interacts with particles and, therefore, acts as a massed object

    • @StarkRG
      @StarkRG Před 10 měsíci +9

      @@LadyAnuB They act like particles with momentum, not mass. (p=mv is only a close approximation of momentum when dealing with very massive objects moving at very slow speeds (compared to the speed of light).

    • @LadyAnuB
      @LadyAnuB Před 10 měsíci +2

      @@StarkRG This is something that I need to brush up on considering this was ~30 years ago for me

  • @sydhenderson6753
    @sydhenderson6753 Před 10 měsíci +13

    Weak interactions tend to take a long time because of what you said...except for the top quark, which decays so rapidly that it doesn't have time to form hadrons. The reason for this is that has more mass than two W and/or Z particles in their normal mass range so it doesn't have to rely on the low probability of producing them that the lower-mass quarks do. It does so directly, and since the speed of a force depends on the mass of the force boson, the reaction is far faster than the strong interaction.

    • @sydhenderson6753
      @sydhenderson6753 Před 10 měsíci +4

      There is also at least one quark produced during the decay, usually but not always a bottom quark.

    • @orbismworldbuilding8428
      @orbismworldbuilding8428 Před 10 měsíci

      That makes a lot of sense actually. Thank you

  • @sapelesteve
    @sapelesteve Před 10 měsíci +17

    Now that was a very strong elucidation of the weak force Dr. Don! Well done! 👍👍💥💥

  • @seionne85
    @seionne85 Před 10 měsíci +13

    Less than ten minutes and I learned more than hours of lectures. Thank you for these Dr. Lincoln

  • @Starchface
    @Starchface Před 10 měsíci +8

    Dr. Don, more "deep dives" would be great. I always learn something from your videos. The production and the presentation are excellent. Thanks so much for the magnificent content all these years. You are appreciated!

  • @philiprice6961
    @philiprice6961 Před 10 měsíci +26

    Imagine this guy as a lecturer! He would be Feynman-level awesome! Actually a full lecture series wouldn't be a bad idea, if you can ever spare the time!

    • @jonnygiantrobot
      @jonnygiantrobot Před 10 měsíci +1

      That would be great! Full lecture series please

    • @darrellee8194
      @darrellee8194 Před 10 měsíci +1

      He's done at least one series for the Great Courses / Teaching Company / Wondrium

  • @kuretinao8
    @kuretinao8 Před 10 měsíci +14

    Don, thank you so much! I've been asking this question for such a long time and couldn't really get a straight answer! Now I have one! Great topic and, as always, great video!

  • @AirwavesEnglish
    @AirwavesEnglish Před 10 měsíci +3

    YES! Thanks a million, Don, I understood this on a whole new level now.
    I love this kind of "deep-dive" video; it's short, to the point and understandable. 🏆 PERFECT!

  • @IronAceSUB
    @IronAceSUB Před 10 měsíci +1

    Thanks Again for the Great Video Dr. Lincoln!!! I love getting to see the world the way you see it and hear all these parts of physics I may miss out on otherwise!
    Have a wonderful week sir! ✨

  • @Tletna
    @Tletna Před 10 měsíci +4

    Yes, I'd love to watch/listen to a deeper dive on the Weak Force, please! Thanks for the video.

  • @jardel_lucca
    @jardel_lucca Před 10 měsíci +8

    I can't emphasize enough how I love Dr. Don charismatic, very well didactic videos. I've been following for years

  • @mheermance
    @mheermance Před 10 měsíci +6

    This was a really interesting video. The notion that a lightweight W boson is possible, but rare, and is required for the interaction is just plain amazing.

  • @SkorjOlafsen
    @SkorjOlafsen Před 10 měsíci

    Always great to see another video by Dr Don!

  • @b4d0n10n
    @b4d0n10n Před 10 měsíci

    Yes please on the deeper dives! The way you explain things is very intuitive (and comical at times) 😊

  • @14loosecannon
    @14loosecannon Před 10 měsíci +12

    Interesting explanation of the weak force, especially describing the W bosons with the required energy as rare. From what I have been told before, the reason the weak force is considered weak is due to its lack of range, and that's due to the boson force carries having so much mass that their lifetimes are short as per the uncertainty principle. Are these two explanations equivalent?

    • @DrDeuteron
      @DrDeuteron Před 10 měsíci +2

      yes, but the latter one is passé. see: Breit Wigner Distribution.

  • @pystl
    @pystl Před 10 měsíci +9

    On the topic of is-it-a-force... The results of Pauli's exclusion principle sure looks like a force, as it counteracts the ability of half spin particles to be in the same state, i.e. to bunch up together. I would really appreciate a video explaining the distinction in that case. Thanks.

    • @denysvlasenko1865
      @denysvlasenko1865 Před 10 měsíci

      Pauli exclusion is not pushing anything. E.g. due to it, a neutron inside neutron star can't decay, because there is "no available electron states" for resulting electron to exist in. But neutron feels no force.

    • @viliml2763
      @viliml2763 Před 10 měsíci +1

      @@denysvlasenko1865 When you draw a free body diagram of a weight on a table, you have the gravitational force pushing downwards and the normal force pushing upwards. The normal force is caused by Pauli exclusion.

  • @marcochimio
    @marcochimio Před 21 dnem

    Fantastic Quick Video. This cleared up several questions I've had for years, but never bothered to deep-dive myself. Thank you.

  • @kronkite1530
    @kronkite1530 Před 10 měsíci +7

    Yes, more of these deeper dives please. This is excellent, so clear I could happily use it with my son.

  • @theliterarycritic939
    @theliterarycritic939 Před 10 měsíci +7

    Thank you for this enlightening info ;)

  • @billwindsor4224
    @billwindsor4224 Před 10 měsíci +7

    This man is completely awesome. And Femilab producing these instructional videos for the general public, solid information on physics that would take us years to learn, is also awesome. Thanks all!! 🏆🏆🏆

    • @martinpiekarski1512
      @martinpiekarski1512 Před 8 měsíci

      Agreed. It is a hands-down the best scientific channel on CZcams. Or at very least the best when it comes to physics.

    • @nickmhc
      @nickmhc Před 7 měsíci

      Top tier physics channel for sure

    • @grahamhagerty8648
      @grahamhagerty8648 Před 4 měsíci

      Try Lecture series The Theory of Everything on Great Courses signature collection!

  • @DRoss-zt1io
    @DRoss-zt1io Před 10 měsíci

    Please keep the deep dives coming, and sharpen more corners!

  • @thomasdjonesn
    @thomasdjonesn Před 10 měsíci +1

    This was a far better way to learn about it than either simply reading about it or trying to make sense of static drawings. I certainly appreciate it, it helps me grasp the concept better.

  • @me0101001000
    @me0101001000 Před 10 měsíci +3

    What a classical explanation of a quantum phenomenon. I'm going to use that now, thanks!
    You think I could run with it and talk about the weak force as though I'm pulling things out of the bag and tossing it again with less contents? Or does that analogy break down?

  • @polanve
    @polanve Před 10 měsíci +11

    Thanks for explaining this. Can you elaborate further on how elementary particles can change? Does this imply that maybe they are not elementary? Even just changing properties without changing to a whole different kind of particle seems to suggest some underlying structure.

    • @drdon5205
      @drdon5205 Před 10 měsíci +6

      That is an open question in particle physics. Personally, I think your conjecture is likely to be true, however there is zero direct evidence supporting it. So, wait and see.

    • @DrDeuteron
      @DrDeuteron Před 10 měsíci +5

      no structure, but underlying symmetry is required. Here it's called weak isospin (because it's weak, and has the same math as spin). The same way an electron can flip it's spin by exchanging a photon, a quark can flip its` flavor by exchanging a weak boson.

    • @moocowpong1
      @moocowpong1 Před 10 měsíci +3

      @polanve ultimately it’s because in electroweak theory, an electron and a neutrino are two sides of the same coin; they’re both part of an “isospin doublet”, and likewise for two different quarks. But we see electroweak theory through the lens of broken symmetry. What seems like a fundamental change to the nature of the particle is like the particle rotating so that a different face of it is visible through that lens.

    • @drdca8263
      @drdca8263 Před 10 měsíci +1

      So, you may have seen Feynman diagrams where there are vertices where there’s a wavy line representing a photon, and two straight lines representing an electron, meeting at a point,
      And depending on how these are arranged, this can represent any of:
      1) an electron absorbing a photon, and then carrying on its way
      2) an electron emitting a photon, and then carrying on its way
      3) either of the 2 above things except replace “electron” with “positron”
      4) a photon decaying into an electron and a positron
      5) an electron and positron annihilating and producing a photon.
      This kind of interaction has 3 parts to it, an electron part, the flipped-around version of the electron part[1], and the photon part.
      Note that there’s the photon part, where the photon is the force carrying particle, a boson,
      and then there’s a pair of electron parts.
      To have an interaction that gives a change in identity, you would have it so that the 3 lines meeting at the point, are of three different kinds. One of the 3 kinds would be the W or Z boson, and the other two lines would be the two different flavors of particles that things are going between.
      (But the interaction has to be compatible with the symmetries, so there are some charges that need to be conserved by this interaction. So any kind of charge that the two flavors might differ in, has to be matched/carried by the charges of the boson.
      Err.. I said the interaction “has to be” compatible with the symmetries, but maybe I should just say “is compatible with the symmetries”.)
      [1]: “flipped around” in that either one is the input “electron goes into interaction” and one is output “electron comes out of interaction”, or one is electron and one is positron (i.e. anti-electron)
      the “flipped around” iirc corresponds to the Hermitian conjugate of some operator, which is pretty much like taking the complex-conjugate transpose of a matrix.

    • @orbismworldbuilding8428
      @orbismworldbuilding8428 Před 10 měsíci

      You should look into quantum field theory.
      Particles are waves or peaks of energy in a field (universe-spanning medium that holds and exchanges energy with fields it overlaps with, and has fundamental symmetries (rules of how it operates explainable by different kinds of math like points vectors tensors etc)
      Every electron acts like an electron because it is just a small part of the same "object".
      The weak force bosons involve the photon field, and the higgs field.
      Before a certain symmetry was broken (by not having enough energy to operate that way), the 3 other higgs particles overlapped with the 3 other photons and became the weak bosons. But back during the electroweak unification era there were 2 chargless higgs, 2 charged higgs, and 2 chargless photons 2 charged photons.

  • @louismcsomas
    @louismcsomas Před 10 měsíci

    Your videos are always amazing. Great content, thank you

  • @DavidBeddard
    @DavidBeddard Před 10 měsíci

    Exeedingly interesting, Dr Lincoln! Thank you!

  • @bluejames3698
    @bluejames3698 Před 10 měsíci +2

    Can you explain why the weak force is “related” to the electromagnetic?
    Great vid as always! Keep up the good work guys!

    • @orbismworldbuilding8428
      @orbismworldbuilding8428 Před 10 měsíci

      You ahould look into electroweak unification era. Its on Wikipedia
      W+, w-, and z boson used to be split up into 3 extra higgs particles and 3 extra photons. When the symmetry broke they "fell into" eachother and became the weak bosons. What used to be 1 force with more particles became 2 forces with less particles

    • @aresh004
      @aresh004 Před 10 měsíci

      ​@@orbismworldbuilding8428 does this imply that the laws of physics were mutable at the time of the big bang and had to "harden" into the more stable laws we see now?

    • @orbismworldbuilding8428
      @orbismworldbuilding8428 Před 10 měsíci

      @@aresh004 the laws of physics just work like the laws of physics at that energy level. If we put enough energy into someparticles they would act like they used to before, during, and shortlely after the big bang.
      Its possible that when we lose enough energy, physics will change again and act differently at those energy levels.
      If the false vacuum theory is true, a false vacuum decay would be an event that results in a significant change in physics.

    • @orbismworldbuilding8428
      @orbismworldbuilding8428 Před 10 měsíci

      @@aresh004 not really
      Think of a phase transition from solid to liquid to gas, gas always acts like gas under those conditions (certain ranges of pressure and temperature) and physics is the same way, with laws and particle interactions changing depending on the phase of the universe.

  • @taichikitty
    @taichikitty Před 10 měsíci +3

    Could you please make a video explaining how the time dilation due to the difference in gravitation between the surface and the center of star affects the behavior and lifecycle of the star?

  • @gustav3d
    @gustav3d Před 10 měsíci

    You are extremely talented at explaining complex stuff . Thanks !

  • @jeremyrixon150
    @jeremyrixon150 Před 10 měsíci

    Thank you! I've been wondering about this for years!

  • @militantpacifist4087
    @militantpacifist4087 Před 10 měsíci +3

    The funny thing about the strong force is that it becomes weak at high energy levels.

  • @hanswoast7
    @hanswoast7 Před 10 měsíci +4

    I would like to hear more details about how it works, about strength comparisons, particle energies for certain scenarios and stuff. As far as I understand it now, it should rather be called "rare force" than "weak force".

  • @lsdap1969
    @lsdap1969 Před 10 měsíci

    Dear Don,
    I'm an avid fan of the videos you release on a regular basis and grateful for the hard work you put into making particle physics more accesible to the audience. I was wondering if there would be on option of making a video regarding weak hypercharge and weak isospin with the perspective of how and why (to our best understanding) matter gains charge as this has been buggin me for a while now.
    I understand that currently our understanding and explanation is that there needs to be a conserved quantity for every symmetry (thank you Emmy) however you of all people should be aware how new perspective of various attempts of explaining the same phenomenon could lead to new insights for some people

  • @mcnichollsdj
    @mcnichollsdj Před 9 měsíci

    First time I've learnt something concrete about the weak nuclear force, rather than that, "It's responsible for some forms of radioactivity..." fob-off I normally read. Great, and good to have the fob-off explicitly acknowledged!

  • @stevelam1315
    @stevelam1315 Před 10 měsíci +4

    How can a quark with a mass less than a proton emit a W+ boson with a mass 82 times greater than proton's mass?

    • @trainjumper
      @trainjumper Před 10 měsíci +1

      Because the mass of a W+ boson isn't always 80 GeV; there's a diminishingly small but non-zero probability of one being created with a significantly lower mass (~1 MeV or so for weak force interactions to occur)

    • @LuisAldamiz
      @LuisAldamiz Před 10 měsíci

      As far as I understand it's a question of two factors: (1) mass is nothing but energy, (2) quantum fluctuations (probability) which beat logic (unless you're strongly quantum-minded, I guess).

    • @drdon5205
      @drdon5205 Před 10 měsíci +1

      What trainjumper said

    • @tonywells6990
      @tonywells6990 Před 10 měsíci

      Virtual particles can have any mass. The W boson in interactions are virtual particles.

    • @stevelam1315
      @stevelam1315 Před 10 měsíci

      @@tonywells6990 it means virtual particles are not physically real, its producing phantom energy?

  • @AnimeForeLife
    @AnimeForeLife Před 10 měsíci +101

    I miss your mustache

    • @MurseSamson
      @MurseSamson Před 10 měsíci +19

      It was only held together by weak forces, and I'm sure it will recur from its own natural processes, given enough time. ⚛️😂

    • @killer414
      @killer414 Před 10 měsíci +1

      The moustache had it's own gravitational field that hindered his other force fields

    • @bluejames3698
      @bluejames3698 Před 10 měsíci

      Same

    • @jardel_lucca
      @jardel_lucca Před 10 měsíci

      ​@@MurseSamsonLMAO

    • @EscapingHome
      @EscapingHome Před 10 měsíci

      😂

  • @michalchik
    @michalchik Před 10 měsíci +1

    Thank you. It might have been my question you were answering. I appreciate the Fuller deeper explanation. I see this CZcams channel as the place to go when I listen to other educational channels and I'm left with questions because of their abbreviated or over simplified explanations of physics. I first really noticed that when you addressed the twin paradox without having to arbitrarily invoke acceleration.
    Would you consider doing a deep dive into the concepts are around Machs principle and the weird fact that acceleration is not relative? My guess is that it has something to do with the absolute geometry of space-time and the nature of causality, but I don't know.

  • @classicaudioadventures
    @classicaudioadventures Před 10 měsíci

    I'd love to see more deep dives, Dr. Lincoln!

  • @stirlingblackwood
    @stirlingblackwood Před 8 měsíci +2

    Great video! I have so many questions!!
    1) If every fundamental particle has a range of possible masses, does each particle have a specific, definite mass prior to observation? Or is its mass fundamentally probabilistic like the position of an electron prior to observation? And what does this have to do with the Higgs field/boson? (This topic might merit a whole other video).
    2) What causes quarks to decay by emitting W bosons? And what is the order of decay? You mentioned that a top quark becomes a bottom quark which in turn becomes a charm quark. Can a charm quark then emit a W+ boson to become a strange quark, which can emit a W- boson to become an up quark, and then a final W+ to become a down quark? Can lower-mass particles ever absorb W bosons to become more massive particles, or does it only go one way?
    3) What about Z bosons!? You barely mentioned them!

  • @terrywallace5181
    @terrywallace5181 Před 10 měsíci +2

    Thank you. I needed this explanation.

  • @TerryClarkAccordioncrazy
    @TerryClarkAccordioncrazy Před 10 měsíci

    This answers a question that bugged me for a long time. Thanks, and please more deep dives.

  • @jonathanbyrdmusic
    @jonathanbyrdmusic Před 10 měsíci

    . Loved this deeper dive. Thank you.

  • @Tubluer
    @Tubluer Před 9 měsíci

    Thanks for the vid, Don! The information density was very high on this one. I am pleased, and so is my cat. :)

  • @Sighhhh
    @Sighhhh Před 10 měsíci +1

    I've been trying to fully understand the weak force for years! Thanks for the vid.

  • @mahyar305
    @mahyar305 Před 10 měsíci

    Excellent work an thanks, please do the "deep dive" into this topic

  • @eritronc
    @eritronc Před 10 měsíci

    Please another video about weak force, very insteresting. Thank you Dr. Don!!!

  • @catoleg
    @catoleg Před 10 měsíci

    Thank you for this explanation, I learned something new today

  • @michaelwalsh6913
    @michaelwalsh6913 Před měsícem

    I know I’m late to this video and to your channel, but wanted to confirm that deep dives like this are very welcome.

  • @larrywebber2971
    @larrywebber2971 Před 10 měsíci

    I agree with many that the deeper dives are very interesting and I personally would like to see more of them.

  • @_rojer9065
    @_rojer9065 Před 10 měsíci

    The heavy sack and boat analogy made so much sense on recoil 🙌🏼

  • @LiborTinka
    @LiborTinka Před 10 měsíci +1

    I always asked myself "what the weak nuclear force actually do?" for years, never being curious enough to look it up. The popular books and shows always just mentioned the "it's responsible for nuclear decay etc.". And finally the answer came. Thanks!

  • @massimiliano-oronzo
    @massimiliano-oronzo Před 10 měsíci +2

    Prof. Lincoln, an off-topic argument: in a next video can you explain the problem of the self-energy of the electron and its solution by introducing what is known as mass renormalization?

  • @luislerrub
    @luislerrub Před 10 měsíci

    Very nice explanation and Video. Thank you!

  • @LowellBoggs
    @LowellBoggs Před 10 měsíci

    Man I love you videos. Thanks!

  • @NalitaQubit
    @NalitaQubit Před 7 měsíci

    Love your episodes!

  • @soundcheck6885
    @soundcheck6885 Před 9 měsíci

    That is an excellent explanation under 10 minutes.

  • @darrellee8194
    @darrellee8194 Před 10 měsíci

    Finally and explanation that makes sense. Thanks.

  • @adoggy1111
    @adoggy1111 Před 9 měsíci

    Can't say enough good things about Don. Keep it up champ

  • @jaimeduran9423
    @jaimeduran9423 Před 10 měsíci +2

    I enjoyed your explanation of a force with two boats and also between two particles. This is the case of a repulsion force. I would like to see a similar explanation for an atractive force. Thank you.

    • @DrDeuteron
      @DrDeuteron Před 10 měsíci

      the ball has negative momentum

    • @jaimeduran9423
      @jaimeduran9423 Před 10 měsíci

      @@DrDeuteron That is a non-intuitive mathematical explanation, not very understandable.

    • @thedeemon
      @thedeemon Před 10 měsíci

      one can imagine people on a big rug pulling the rug from each other. These are no more than vague illustrations/metaphors, don't expect them to correspond precisely to quantum processes.

    • @DrDeuteron
      @DrDeuteron Před 10 měsíci

      @@jaimeduran9423 well virtual particles have the energy and momentum required to conserve energy and momentum between the two real particles, after the fact. So in a bound circular orbit, that would be energy = 0, momentum < 0, mass--> imaginary.
      plus: the exchange is not time ordered...it's not like one emits and the other absorbs. There is no intuitive value to the analogy.

  • @Alex-iwe8ke9dds
    @Alex-iwe8ke9dds Před 10 měsíci

    A great, short explanation about something that should had been learned when we learned about this force.

  • @Dai5tr0y3r
    @Dai5tr0y3r Před 10 měsíci

    I would love a deeper dive series!

  • @maxeuker2949
    @maxeuker2949 Před 10 měsíci

    I feel like I'm pretty informed for someone not in the field. I knew none of this. Thank you so much for the insights, very cool!

  • @barefootalien
    @barefootalien Před 10 měsíci +2

    I'd definitely love a longer, more in-depth video about the Weak Force. I wish your videos were much longer in general!
    I'd also love an explanation of the Pauli Exclusion Principle and how exactly it works, in terms of forces. I've heard so many conflicting explanations, each one stated with more gusto and certainty than the last, about something as simple as "why don't I fall through my chair?" and how that relates to "Why don't white dwarves collapse?"
    Obviously the latter is from electron degeneracy pressure, which is related to the Pauli Exclusion Principle, yet nobody ever describes _how_ that happens. Sure, okay, no two fermions can occupy the exact same quantum state, but when they try, something _stops_ them. This is presumably a force of some kind, because F=ma. Without that force, the particles would continue to move closer to each other. The fact that they don't, means there's a force... right? But what force is it?
    Similarly, I've heard descriptions of solid-solid object interactions as being governed by the electromagnetic force, but I've also seen very convincing claims, backed up by mathematical analysis, that says that would be far, far too weak, and that the real reason I don't fall through my chair is the Pauli Exclusion Principle, but... that seems very unlikely, and nobody has yet been able to explain to my satisfaction _how_ that happens.
    So I'd love a video that can answer this question. When two particles get near each other, enough that their wave functions begin to overlap and they become at-risk of sharing the same quantum state, *something happens* to prevent that. What is that something? So far whenever I ask that question, all I get is "The Pauli exclusion principle prevents it." But that's just a name for some words describing a concept. Without more concept beneath that to be revealed, it can't prevent _anything,_ you know? There's nothing in there that feels satisfying in the same way that electromagnetism, gravity, or even the strong or weak forces does.

    • @UDumFck
      @UDumFck Před 9 měsíci

      Excellent comment. I’ve wondered the same about white dwarves.

  • @elaadt
    @elaadt Před 10 měsíci

    Wow! I had no idea. After all the physics I've learned and explanations I've heard, this was new to me.

  • @markhuebner7580
    @markhuebner7580 Před 10 měsíci

    Thanks! Very enlightening information about the Weak force!

  • @thomas6502
    @thomas6502 Před 10 měsíci +1

    Some laypersons contend that gratitude is also a force. If it succeeds in compelling, compelling content, all the more so. Thank you Fermilab (and all the other creators inspired by your contributions).

  • @senseofeverthing
    @senseofeverthing Před 10 měsíci

    I'm interested in quantum- and astrophysics since I was a child, but I never heared of the mass-distribution until now. You, Sir, blew my mind today.

  • @mrdsn189
    @mrdsn189 Před 10 měsíci

    Thank you, this helped a lot!

  • @lucidmoses
    @lucidmoses Před 10 měsíci

    Nicely done.

  • @user-xn4wq4sv3r
    @user-xn4wq4sv3r Před 10 měsíci +1

    Thank you for the excellent video. Actually, you have defined the general concept of a force, which means to change a state of an object - a particle's position, its identity, its quantum state, etc. A physicist comes to this general concept of a force when he or she steps into the philosophy of physics.

  • @kevinsayes
    @kevinsayes Před 10 měsíci

    I would’ve loved to have you as a prof Don. Admittedly, my degree is in Poli Sci (and I now work in hydrocarbons 🤷🏻‍♂️ lol), but you’d have made the required physics course fun. Lol that just to say I love your enthusiasm and how you present challenging concepts to us. Thanks for the vid!

  • @HectorRoldan
    @HectorRoldan Před 10 měsíci

    I love how far we're going with observations. It's kind of fun to then imagine Star Wars and Star Trek Media and other Science Fiction that can potentially be explained and reproduced as we evolve our understanding of our Universe and ourselves. Thanks for the presentations.

  • @LynxUrbain
    @LynxUrbain Před 10 měsíci

    What a week ! JWST detecting CH3+, IceCube results for high-energy neutrinos and NANOGrav's evidence for the gravitational wave background. I'm looking forward to learning more details about all those great news (or at least some of them) !

  • @Paco-nq5yz
    @Paco-nq5yz Před 10 měsíci

    Toujours aussi intéressant MERCI

  • @sadfox9294
    @sadfox9294 Před 10 měsíci

    This is the video I needed to see.

  • @DonBrowningRacing
    @DonBrowningRacing Před 10 měsíci

    Yes! I want to hear more! How what when where and why did we learn about this weak force?

  • @brutusl2786
    @brutusl2786 Před 10 měsíci

    Great talk, have been trying to figure out the weak force for a while, finally makes sense. Just one question, why does the boson need to be in that particular energy range to get that interaction

  • @datapro007
    @datapro007 Před 10 měsíci

    Cool topic Don, thanks.

  • @rinaazmomin1234
    @rinaazmomin1234 Před 9 měsíci

    I have watched this channel at 11 years old and this is amazing❤❤🎉

  • @comesignotus9888
    @comesignotus9888 Před 10 měsíci +2

    Definitely need a deeper dive with explanations of how neutrinos interact using the weak force.

    • @orbismworldbuilding8428
      @orbismworldbuilding8428 Před 10 měsíci

      So you know how quarks interact with it?
      Think of that, but keep in mind that a neutrino is a "down lepton" while an electron is an "up lepton".

    • @denysvlasenko1865
      @denysvlasenko1865 Před 10 měsíci +1

      @@orbismworldbuilding8428 > a neutrino is a "down lepton" while an electron is an "up lepton".
      The opposite. e- needs to emit W- to become a neutrino. d needs to emit W- to become an u. Thus, electron is a "down"-type particle, and neutrino is "up"

    • @orbismworldbuilding8428
      @orbismworldbuilding8428 Před 10 měsíci

      @@denysvlasenko1865 oh cool! I didn't know that
      Very good to know

    • @orbismworldbuilding8428
      @orbismworldbuilding8428 Před 10 měsíci

      @@denysvlasenko1865 thank you!

  • @imagine.o.universo
    @imagine.o.universo Před 10 měsíci

    Is this "range of mass" applied to all particles or only to the W boson?

    • @drdon5205
      @drdon5205 Před 10 měsíci +2

      In principle, all. However, if a particle is stable, the range is super small. If the particle is short-lived, the range is large.

    • @imagine.o.universo
      @imagine.o.universo Před 10 měsíci

      @@drdon5205 thank you!

  • @eqwerewrqwerqre
    @eqwerewrqwerqre Před 10 měsíci

    I need an even deeper dive! I've never heard any of this before, and hearing it now tells me there must be more! I want the titanic of deep dives

  • @PuffTMagicDragon
    @PuffTMagicDragon Před 7 měsíci

    Best channel ever!

  • @denysvlasenko1865
    @denysvlasenko1865 Před 10 měsíci +1

    I think a video would be helpful which would show simplified Standard Model's Lagrangian and explain how you can "read off", without any calculations, what its terms actually mean: how you can see which particles can interact, what determines the strength of interactions, what terms are not allowed by postulated symmetries of the theory, and what this means.
    A LOT of people watching these videos never actually dab into math of the theory. Some seem to even coming to the conclusion that "science" is just some sciency-sounding words strung together and lots of handwaving (and they mimic this with hilarious results). They genuinely do not understand that there is actual rigorous mathematical "meat" beneath it, the handwaving is actually not allowed as a part of the theory. Everything has to logically come out of the math. IOW: they have rather erroneous understanding how science works. This is worth improving.

  • @jamesmccoy8568
    @jamesmccoy8568 Před 10 měsíci

    Best explanation of this ever

  • @ArchDudeify
    @ArchDudeify Před 10 měsíci

    Excellent deeper dive
    Excellent t-shirt 😎

  • @caperider1160
    @caperider1160 Před 5 měsíci

    No one explained weak force like you did. Thank you

  • @dogussahin
    @dogussahin Před 7 měsíci

    This is a great video to put the word “force” into a better context. However I still struggle the interchangeable use of force and energy in physics world. Where they mean the same thing, where they differ, can you also make a video on that?

  • @connecticutaggie
    @connecticutaggie Před 10 měsíci

    Great video. I love understanding things more.
    One other question. Why are the Weak Force and Electromagnetism often discussed as a pair. I have head the force call the Electroweak force many times.

  • @ffs55
    @ffs55 Před 10 měsíci

    Love the coverage about on the "rare" aspect

  • @QuantumCrafts
    @QuantumCrafts Před 10 měsíci +2

    Very interesting, thank you!

  • @fleamaster123
    @fleamaster123 Před 10 měsíci

    Hey Don, always enjoy your videos! One question or the next Q&A, if it make it trough - as according to GR we know the time is relative and affected by the mass and gravity. In this case how can we be sure for the age of the universe?

    • @thedeemon
      @thedeemon Před 10 měsíci

      We infer the age from apparent expansion of space around us, how distant galaxies recede from each other (by calculating how long they were doing this to get that far). This is a very rough estimation, like up to 10% of error. Meanwhile gravitational time dilation even inside stars is so tiny, it may provide like a 0.1% difference between time passed inside and outside. So it doesn't really change our estimation of age.

  • @waynelast1685
    @waynelast1685 Před 10 měsíci

    That video was Puurfect. I always wondered about this.

  • @TheyCallMeNewb
    @TheyCallMeNewb Před 10 měsíci

    Awe at those opening and closing cards!!