Impossible Muons

Sdílet
Vložit
  • čas přidán 12. 11. 2018
  • Thanks to Brilliant.org for supporting MinutePhysics! The first 200 people who go to www.brilliant.org/minutephysics will get 20% off a Premium Subscription to Brilliant.
    This video is about how terrestrial muons are part of our experimental proof of time dilation, length contraction, and special relativity in general.
    REFERENCES
    Cosmic Rays
    en.wikipedia.org/wiki/Cosmic_ray
    Terrestrial Cosmic Rays
    people.physics.tamu.edu/wwu/do...
    Cosmic Ray Interaction Depth & Muon Production Altitude
    cosmic.lbl.gov/SKliewer/Cosmic...
    Cosmic rays are stronger at the poles
    www.antarcticglaciers.org/glac...
    Cosmic Rays on Hyperphysics
    hyperphysics.phy-astr.gsu.edu/...
    Exponential decay and mean lifetime
    en.wikipedia.org/wiki/Exponen...
    Support MinutePhysics on Patreon! / minutephysics
    Link to Patreon Supporters: www.minutephysics.com/supporters/
    MinutePhysics is on twitter - @minutephysics
    And facebook - / minutephysics
    And Google+ (does anyone use this any more?) - bit.ly/qzEwc6
    Minute Physics provides an energetic and entertaining view of old and new problems in physics -- all in a minute!
    Created by Henry Reich
  • Věda a technologie

Komentáře • 2,1K

  • @steve1978ger
    @steve1978ger Před 4 lety +1475

    "irresponsible scientists shoot whole earth at space particles at near light speed"

  • @stevec7923
    @stevec7923 Před 5 lety +661

    This is a *brilliant* explanation of how time dilation and length contraction are simply the same phenomenon from two different frames of reference. Two sides of the same coin.

    • @pabloleonjimenez
      @pabloleonjimenez Před 3 lety +3

      No!!

    • @parthbonde2106
      @parthbonde2106 Před 3 lety +1

      They are not two sides of the same coin so as to say.

    • @stevec7923
      @stevec7923 Před 3 lety +12

      @@parthbonde2106 Perhaps you didn't watch the video. Time/length contraction is dependent on the observer.

    • @anandsuralkar582
      @anandsuralkar582 Před 3 lety +2

      Two sides of same coin earth

    • @Grizzly01
      @Grizzly01 Před 3 lety +2

      @@pabloleonjimenez Yes!!

  • @ilovemathandswimming
    @ilovemathandswimming Před 5 lety +1028

    In soviet muon, ground reach you

    • @raghavdoshi803
      @raghavdoshi803 Před 4 lety +23

      You mean the ground reaches THEM

    • @lexuankhoi-james3657
      @lexuankhoi-james3657 Před 4 lety +9

      does that mean muons are russians and flat earthers?

    • @Operational117
      @Operational117 Před 4 lety +4

      Lê Xuân Khôi - James
      Considering a muon flying at 99.995% the speed of light lasts 100 times as long as a stationary muon, Earth, which is normally around 12000 km in diameter, would look like it’s actually 120 km in diameter in one direction, specifically the direction the muon moves toward.
      With that in mind, Earth, to a muon, would look like a double-sided pancake. So yeah, we can consider muons “flat-earthers”.

    • @paulmichaelfreedman8334
      @paulmichaelfreedman8334 Před 4 lety +1

      @@Operational117 A third perspective: The proper speed of the muon is way above light speed (Proper speed is the speed the traveller experiences and can go to infinity - the proper speed of a photon is infinite, for example). To the muon the earth doesn't look flat. It just comes at it way faster than light.

    • @VishalMaharathy
      @VishalMaharathy Před 3 lety +1

      its crazy how people always make a way to make something important sarcastic. love u bro

  • @ReySilverskin
    @ReySilverskin Před 5 lety +96

    The power of spacetime dilation continues to astound me. I always pictured it as applying mainly to large objects, probably because of all those thought experiments. I honestly never thought it would apply to individual particles like this. But now that I think about it, of course it would. Why wouldn't it?
    Science is cool.

  • @thejesuschrist
    @thejesuschrist Před 5 lety +2452

    Amazing! Evidence for time dilation is awesome!

    • @ssiddarth
      @ssiddarth Před 5 lety +45

      You are awesome 😁🤗😋👍

    • @HeythemMD
      @HeythemMD Před 5 lety +331

      Wait... does the right check mark mean you're actually Jesus XD ?

    • @aadesh_kale
      @aadesh_kale Před 5 lety +42

      You are awesome! You might have to study a lot to create such particles.

    • @lutyanoalves444
      @lutyanoalves444 Před 5 lety +12

      Yo!! My maaannnnn!! :D

    • @vuphihung6610
      @vuphihung6610 Před 5 lety +33

      Jesus Christ,how can you be so quick?You commented on the video just after it got uploaded for like 10 mins.Good God.

  • @spelunkerd
    @spelunkerd Před 5 lety +841

    For some reason I find time dilation to be easier to comprehend compared to length dilation. Shrinking of an approaching three dimensional object on only the axis of apparent movement seems, more abstract.

    • @Bodyknock
      @Bodyknock Před 5 lety +48

      spelunkerd In a way you can think of length contraction as the reverse of time dilation. If you are stationary watching a clock moving quickly from your perspective most of the motion of the clock is in the direction of travel so less of its motion is spent relatively on the ticks of the clock, hence it is experiencing fewer ticks per minute than you experience. On the other hand from its perspective it is traveling from the same point A to point B that you see it traveling, and in its frame of reference time is proceeding the same as if it was at rest, so for it to travel that distance in the same number of ticks on its clock that you see from the outside it must be seeing the distance it is traveling as shorter than the distance you are seeing it travel. Just like in the video we see muons make a long trip with a slow clock but they see their clock at normal rate but traveling a shorter distance and both us and the muon agree on how many total ticks go by on its clock during the entire trip.

    • @Videohead-eq5cy
      @Videohead-eq5cy Před 5 lety +39

      It's more like time dialation and length contraction are both cause and effect of each other. If time moves slower at the speed of light then you're bound to travel less distance than you seem to move and vice versa

    • @ryancraigt
      @ryancraigt Před 5 lety +19

      Mhmm. Length contraction is essentially the biproduct of time dilation from the point of view of the moving object. Good explanations.

    • @leonlupus7148
      @leonlupus7148 Před 5 lety +11

      For the sake of ease of explanation I'm gonna say that 100m/s is enough to dilate your time by a factor of two (just a bit of a stretch I know), so if you were to travel 100m/s for a second, a stationary observer would observe you travelling for two seconds. So from your perspective you had moved 100m, but the observer would see that you had moved 200m. That 200m was "contracted" to 100m for you due to your speed.

    • @Blox117
      @Blox117 Před 5 lety +8

      experiencing totally different rates of time isnt abstract and hard to comprehend? what are you, a time traveller?

  • @renelznicolas8659
    @renelznicolas8659 Před 5 lety +274

    Henry, PLEASE make a video explaining how particle detectors work!! Great job, btw. Love you

    • @rajveersingh2056
      @rajveersingh2056 Před 4 lety +5

      Sounds like a veritaseum episode

    • @Nachoman24
      @Nachoman24 Před 4 lety +11

      Forgot too say no homo

    • @fuqin9462
      @fuqin9462 Před 4 lety

      Too dumb to read the Wikipedia article?

    • @pauldavis2108
      @pauldavis2108 Před 3 lety +17

      Believe it or not they are very simple. Detectors like this one in the video are scintillation detectors. When the muon passes through the detector material it gives some of it's energy to the electrons in the material, those electrons then re-emit that energy as light. Photosensors detect the light and turn itto electrical pulses which are digitized and the amplitude/time recorded so that the orginal muon path can be recreated.

    • @Noname-67
      @Noname-67 Před 3 lety +6

      @@fuqin9462 hi not dumb person, I thought you read all Wikipedia article, why would you come here

  • @hymanimy
    @hymanimy Před 5 lety +32

    Literally just learnt about time dilation and length contraction in class for the first time yesterday. This helped me understand it so much more

  • @flensdude
    @flensdude Před 5 lety +2098

    In other words, Earth is flat! ...
    ... for objects moving at relativistic velocities due to length contraction.

    • @josephburchanowski4636
      @josephburchanowski4636 Před 5 lety +64

      Yup, when moving at non-relativistic velocities from the reference of someone on Earth; the Earth is a Parker Oblate Spheroid. When moving at relativistic velocities relative to someone on Earth (since velocity can only exist relative to something else, we are technically moving at relativistic velocities relative to muons "hence why were are what contract from its point of view").
      Ever try seeing if you could get someone to attack you with Ad hominems because you claimed "It is a scientific fact that the Earth is flat in some inertial reference frames" ?
      I always find it hilarious how people who think they are on the side of science; attack actual physics without ever realizing that they are wrong.

    • @zacharyb100
      @zacharyb100 Před 5 lety +85

      holy shit they were right all along lmao

    • @prateekkarn9277
      @prateekkarn9277 Před 5 lety +39

      @@zacharyb100 they won't understand shit lol

    • @Crimsonraziel
      @Crimsonraziel Před 5 lety +15

      @@josephburchanowski4636 Only if you're falling towards the surface fast enough. On impact it becomes a globe again. Also running around in circles on the surface doesn't turn it into a disc either.

    • @jongyon7192p
      @jongyon7192p Před 5 lety +18

      if the earth is flat... WHY R THERE MOUNTAINS AND VALLEYS???

  • @mcig98
    @mcig98 Před 4 lety +45

    3:12 that stickman just turned into an *OK*

  • @PabloPerroPerro
    @PabloPerroPerro Před 5 lety +21

    After watching your series on special relativity, I understand this video, and it has blown my mind.
    Awesome!

  • @bjs301
    @bjs301 Před 5 lety +10

    I learned this in college decades ago. I've forgotten most of the physics I learned back then, but this always stuck with me. It's just an awesome real-world proof of relativity.

  • @PersianMapper
    @PersianMapper Před 5 lety +541

    I clicked on this faster than a Muon could say length contraction

  • @karl1ok
    @karl1ok Před 5 lety +213

    Holy cow, this is an insane, and mind blowing example of real-world physics

    • @koolguy728
      @koolguy728 Před 5 lety +18

      isnt all physics... real world physics...? isnt that the point of physics?

    • @jerrymiyahtylerious2847
      @jerrymiyahtylerious2847 Před 5 lety +1

      @@koolguy728 ye it is the guy up there is just dense

    • @karl1ok
      @karl1ok Před 5 lety +4

      @@koolguy728 a lot of physics is hard to grasp, and thus I place it in the back of my head as "standard physics". This video made me acually understand how this phenomenon workes, and thus got promoted to physics I understand, aka "real world physics".

    • @zodiacfml
      @zodiacfml Před 5 lety +3

      Actually, it really is. The topic of Muon is nothing remarkable but its properties are when compared to photons/electromagnetic radiation.
      If Muons decays then photons travelling at exactly the speed of light will never decay! Photons don't have a sense of time or age until it collides into something.

  • @djotter
    @djotter Před 5 lety +9

    I saw this demonstrated at Jungfrau in Switzerland about 10 years ago. They had a reseach station detecting muons at 3500m above sea level and again closer to sea level (I think in Bern?), and at that altitude difference, the rate of detection of muons should be very different because of their half life, but it was almost identical. I don't remember if they could explain it on the information panel I read, but it is nice to hear an explanation all this time later :)

    • @pascal-ox7wm
      @pascal-ox7wm Před rokem +1

      They have a live detector on display at the Einstein Museum in Bern. It lights up every time a muon is detected - pretty cool.

  • @mr.curious1714
    @mr.curious1714 Před 2 lety +1

    This is a brilliant explanation and I think the best available on youtube, and in just 4.5 minutes.
    I also had a doubt that *What about Muons' perspective* , many explain this, but no-one explains the length contraction in this simple way. You are the best YT channel for all these amazing science stuff to be explained in such simple way, just like legendary Richard Feynman did.

  • @morgansearle3912
    @morgansearle3912 Před 5 lety +3

    Just finished the first module of special relativity, and honestly this is helpful. I would appreciate it more if it also covered the peculiarities of Einstein velocity addition and exactly how Doppler shift calculations are supposed to work, because that's a REAL sticking point for basically all of us, but it was nice to see the muon dilation experiment in more concrete terms here.

  • @theguyfrommars8929
    @theguyfrommars8929 Před 5 lety +48

    "Muons Impossible" - Starring Time Cruise and Length Contraction

  • @minomorr7399
    @minomorr7399 Před 5 lety +1

    Omg I just learned this this semester!! You have no idea how happy this makes me!!

  • @kockarthur7976
    @kockarthur7976 Před 5 lety

    It's about time we got a video on this. Great job Mr. minutephysics.

  • @xXPvPSkillerXx
    @xXPvPSkillerXx Před 5 lety +359

    If I could just dilate the time of my weekends...

    • @mmmhorsesteaks
      @mmmhorsesteaks Před 5 lety +30

      Gotta go fast!

    • @TheMiracleMatter
      @TheMiracleMatter Před 5 lety +12

      @@mmmhorsesteaks That would do the opposite, scrub !

    • @mmmhorsesteaks
      @mmmhorsesteaks Před 5 lety +50

      @@TheMiracleMatter Not from my perspective...

    • @mmmhorsesteaks
      @mmmhorsesteaks Před 5 lety +3

      @@JordanNexhip say jonathan and me are both wearing watches but he's really fast during the weekend. Say it's 0:00 saturday morning and weekend starts. By the time weekend's over for me; it might only be sunday morning for jonathan.

    • @NielsCG
      @NielsCG Před 5 lety

      you can do it

  • @Nitram2810
    @Nitram2810 Před 5 lety +95

    "The earth moving toward to at 99.995% the speed of light"
    Am i the only who was terrified by this mental picture??

    • @hainsay
      @hainsay Před 4 lety +6

      I think it's a fairly light thought actually

    • @wyattb3138
      @wyattb3138 Před 4 lety +2

      My mind is blown thinking about that and it’s amazing that this happens in real life and isn’t crazy science fiction.

    • @General12th
      @General12th Před 4 lety +1

      HE WIPED MY FACE WITH A PLANET

    • @Y337n3ss
      @Y337n3ss Před 4 lety +1

      “vibe check”

    • @nandakumarcheiro
      @nandakumarcheiro Před 3 lety

      The earth moving towards the sun is varied as the color of sun is changing from orange red in the morning to yellow white later on.

  • @RedJoker9000
    @RedJoker9000 Před 5 lety

    Love minphysics video and paradoxes. Putting them together got you a like and a favorite.

  • @shreeyamittal1771
    @shreeyamittal1771 Před 4 lety +1

    Loved this video! First time I understood a minutephysics video in one try.

  • @curtin-hammett
    @curtin-hammett Před 5 lety +20

    This is insanely beautiful.

  • @fuxpremier
    @fuxpremier Před 5 lety +3

    Great video as always.
    There seems to me there is a small mistake at 1:12 though. If muon half-life is 1.5 μs, then after 10 μs, there should be around 1% left rather than 0.1%, shouldn't it?

  • @Inexorablehorror
    @Inexorablehorror Před 5 lety

    Already knew about this effect, but a very nice presentation and explanation. Thank you!!

  • @sweetzizi3060
    @sweetzizi3060 Před 4 lety

    Thank you so much! I needed some info about muons and you gave me more than I needed!

  • @abdu_jilani
    @abdu_jilani Před 3 lety +8

    Anyone here after the recent breakthrough experiment

  • @danielk5338
    @danielk5338 Před 5 lety +157

    so myons made in the lab don't travel at that speed ? are they slower ?

    • @TheAgamemnon911
      @TheAgamemnon911 Před 5 lety +163

      Short answer: Yes. Long answer: Lab experiments can't produce energies per particle on the level of cosmic radiation. Also, if you smash two particles in a head on collision instead of shooting one at a stationary target, the resulting particle shower is also relatively slow in the laboratories frame of reference.

    • @danielk5338
      @danielk5338 Před 5 lety +9

      @@TheAgamemnon911 ok thx 👍🏻

    • @Thrill98
      @Thrill98 Před 5 lety +8

      this makes no sense at all

    • @WubbyPunch
      @WubbyPunch Před 5 lety +16

      Agamemnon that was the kind of explanation that only someone who already understands, would understand lol

    • @Videohead-eq5cy
      @Videohead-eq5cy Před 5 lety +18

      He made a mistake explaining that bit, I think. Muons are supposed to have a half life of 1.5 microseconds when they're at rest in lab frame or their own frame. So if they move at nearly the speed of light for that amount of time the don't reach very far. That's the conundrum. But if you put relativity into work, it checks out

  • @OrdinarilyBob
    @OrdinarilyBob Před 5 lety

    This is so amazingly complicated, yet also makes perfect sense the way MinutePhysics descibes it that I'm simply gobsmacked and terribly pleased at the same time. Thanks! :)

  • @jamescollins4500
    @jamescollins4500 Před 3 lety

    That was great. I have read about the time dilation before, but I had never thought of the length contraction. Also the relativity concept of looking at an event from two (or more) perspectives. Thanks.

  • @Jordan-zk2wd
    @Jordan-zk2wd Před 5 lety +49

    Fascinating that these two factors, length contraction and time dilation, can lead to no contradictions in observations like number of particles of some type observed, despite being totally different effects. That agreement is of course baked into the spacetime interval in fundamental way, but that it can be baked into that is baffling...

    • @gracicot42
      @gracicot42 Před 5 lety +18

      Being totally different effects? No it's the same effect. If treat time like other dimension, then time dilation is just length contraction applied to time. Time is stretched, so is space.

    • @Uejji
      @Uejji Před 5 lety +7

      They're not different effects. They're the same effect viewed from different observers. In this case, we observe the time dilation, the muon observes the length contraction. We would also see the muon as length contracted and the muon would see us a time dilated, but neither of those are important for resolving the muon paradox.

    • @Blox117
      @Blox117 Před 5 lety +10

      the real mystery is why spacetime has these things baked into it instead of fried.

    • @Jordan-zk2wd
      @Jordan-zk2wd Před 5 lety +4

      @@gracicot42 no, time dilation and length contraction are different. One stretches one squishes IIRC. This was covered in a previous video in his Special Relativity series. There is a comparable affect, distance dilation, for distance and another comparable affect, duration contraction (or something), for time.
      Also, the formulas for space and time are somewhat different, space and time have different maths applied in the Lorentz Transformation: x'=y(x-vt), t'=y(t-vx/c^2) (where y is my attempt to replace the symbol for gamma on my phone), and in the spacetime interval (ds^2=dx^2+dy^2+dz^2-ct^2).
      Notice the extra factors of c in both, as well as the minus sign in the spacetime interval which give's space it's hyperbolic character (noticed recently you can see hyperbola's in the space globe actually). I suppose though to be fair in natural units the c's have a value of one (sans units) which do in fact make the direction you are travelling in, x, and time, t, transform in numerically identical ways, but I would caution against simply saying time time an identical dimension which transforms the same so of course time and space are treated the same because 1) time transforms the same as the direction of travel x, not the y or z directions, and 2) the minus sign in the spacetime interval is a fundamental difference

    • @gracicot42
      @gracicot42 Před 5 lety +1

      @@Jordan-zk2wd I stand corrected. Thank you!

  • @justanotherhotguy
    @justanotherhotguy Před 3 lety +4

    CZcams is back at suggesting what’s interesting yet not even questioned at this particular second. Well, not anymore, I’m interested!

  • @vaisakhvm1726
    @vaisakhvm1726 Před rokem

    Awesome!!! Cheers to SR, muons, and minute physics

  • @GlitchedBot
    @GlitchedBot Před 5 lety

    I've watched videos about this soo many times and my mind is still blown away...

  • @megaeliminator3260
    @megaeliminator3260 Před 5 lety +99

    I love the *KNOWLEDGE* you provide

    • @Cavething777
      @Cavething777 Před 5 lety +2

      sans

    • @megaeliminator3260
      @megaeliminator3260 Před 5 lety +4

      @@Cavething777 yea you think you are *humerus*

    • @vividandlucid
      @vividandlucid Před 5 lety +7

      But you know what I like a lot more than materialistic things?
      *K N A W L E D G E*

    • @4ltrz555
      @4ltrz555 Před 5 lety +4

      *K N A W L I D G E*

    • @blue9139
      @blue9139 Před 5 lety

      Oh no don't make me shoot u with cringe blaster

  • @DA-bm2mj
    @DA-bm2mj Před 5 lety +4

    I'm happy for this video's author for how he makes up a problem (that I as a non physicist didn't know it even existed) and then how he successfully solves it lol

  • @stevedaniales4695
    @stevedaniales4695 Před 5 lety

    This video! So concise and yet deeply informative in a very intuitive way!

  • @ascesh
    @ascesh Před 5 lety

    Had to see this video again because it was just soo cool!

  • @mrl9418
    @mrl9418 Před 5 lety +3

    Hi, great video. I gave a question : how do muons in a laboratory decay in the 2.2 microseconds (which I suppose is the time as measured by the lab) and not the same as in the atmosphere? They start out at a lower speed? Or how are they decelerated ?

  • @saoirsemurray1310
    @saoirsemurray1310 Před 5 lety +4

    1:33 A touch proud that at this point I was like ".............maybe time dilation?..."

  • @johnfischer1298
    @johnfischer1298 Před 2 lety

    This was beautiful. Thank you very much. This gives me a good base for a problem I’m working on.

  • @9753flyer
    @9753flyer Před 5 lety

    Very well put together and explained!

  • @muonnampeeti9979
    @muonnampeeti9979 Před 4 lety +16

    Thanks for telling me what my name means

  • @lachlandunn2137
    @lachlandunn2137 Před 4 lety +6

    Could you use high energy muons to assist in the cold fusion of the 1950s? How would this work relativistically?

  • @SreenikethanI
    @SreenikethanI Před 4 lety

    This video makes SO MUCH MORE SENSE after watching thr Special Relativity series of MinutePhysics!!!

  • @KeithMoon1980
    @KeithMoon1980 Před 3 lety

    This video is the first one that has made length contraction make intuitive sense. Thanks!

  • @ananyapathak8312
    @ananyapathak8312 Před 5 lety +503

    Cats want to know about impossible meowons

    • @ginnyjollykidd
      @ginnyjollykidd Před 5 lety +3

      Kitten explanation of muon is simple and easy to understand.

    • @fishchan5020
      @fishchan5020 Před 5 lety +4

      Ananya Pathak LOL you killed me

    • @LoopZoopler
      @LoopZoopler Před 5 lety +13

      You're kitten me

    • @oldtimer5111
      @oldtimer5111 Před 5 lety +7

      Ananya Pathak ,Schrodinger is the man to ask about that.

    • @fgvcosmic6752
      @fgvcosmic6752 Před 5 lety +5

      I think cations are good enough for them

  • @nathanhardcastle1729
    @nathanhardcastle1729 Před 5 lety +5

    You drew the muon with a positive charge at the begging, was that deliberate

  • @bob2nifty
    @bob2nifty Před 5 lety

    beautifully put together thanks

  • @cristiannavarroparraguez34

    Amzing video! Much appreciated

  • @oliverkirkland420
    @oliverkirkland420 Před 5 lety +341

    What's a cow's favorite particle?
    A moo-on!
    ((i'm sorry))

    • @kyogrix
      @kyogrix Před 5 lety +37

      Time for you to mu-ve-On

    • @mr.j_krr_80
      @mr.j_krr_80 Před 5 lety +3

      @@kyogrix much better... Muuuuuuch BETTER

    • @VocalMabiMaple
      @VocalMabiMaple Před 5 lety +2

      @@mr.j_krr_80 MOOOOOOuch better

    • @MattZelda
      @MattZelda Před 5 lety +6

      What's a Pokemon's favorite particle?
      A mew-on.
      I'm not sorry.

    • @cowthedestroyer
      @cowthedestroyer Před 5 lety

      Moo?

  • @danielg.9472
    @danielg.9472 Před 5 lety +6

    Gps Satellite Clocks is also an elegant application of the time dilation I would say

  • @174paul
    @174paul Před 3 lety

    Wow! That explanation was just amazing!

  • @KirbyTheKirb
    @KirbyTheKirb Před 3 lety

    This is such a quality episode, I wish it had 5million+ views, very interesting and people are missing out.

  • @TheCentrifugeChannel
    @TheCentrifugeChannel Před 5 lety +14

    So .. I have tried how an automatic clock in my centrifuge behaves (at a g-force of 2000g). The result was obvious :D
    Do you think because of the acceleration (3570 RPM), the time behaves differently for a digital clock inside and outside of my laboratory centrifuge ? (because of relativity)

    • @danieljensen2626
      @danieljensen2626 Před 5 lety +4

      Possibly (probably?), but for non-linear movement the situation is really complicated. You'd have to either approximate the circular path as a series of very small straight lines, or somehow invoke General Relativity. In either case I don't think there's any simple way to calculate the expected effect. And probably it would be quite small and hard to measure anyway.

    • @AkwardCheeseIsAkward
      @AkwardCheeseIsAkward Před 5 lety +1

      @@danieljensen2626 Dude, you have no idea what you're talking about. Seriously.

    • @danieljensen2626
      @danieljensen2626 Před 5 lety +4

      @@AkwardCheeseIsAkward I'll admit that this is a weird problem and I'm not well versed in GR, but I am a physics PhD student, and I am quite familiar with special relativy...

    • @danieljensen2626
      @danieljensen2626 Před 5 lety +10

      @@erazure. PhD student, don't have the degree yet, but Special Relativity only applies to non-accelerating reference frames. An object in a centrifuge is constantly accelerating, so you can't just take the magnitude of the tangential velocity and calculate the time dilation caused by that. (Obviously the tangential velocity is trivial to calculate, that's not the problem). So strictly speaking you cannot answer the question with special relativy at all.
      I believe what you could do though is break the circular motion up into infinitesimal linear segments, where you can sort of pretend special relativy does apply. Then you could account for the time dilation occurring during that infinitesimal movement, but you could not simply add those up, because you also have to account for the change in reference frames between every infinitesimal segment. I'm pretty sure this would be extremely non-trivial.
      A quick search of "relativistic rotation" on Google scholar reveals that this is actually a somewhat open area of debate.

    • @danieljensen2626
      @danieljensen2626 Před 5 lety +2

      @ You can believe whatever you want man, I was just trying to answer the question. I don't actually know if that's how it's done, probably there are other approaches, that's just how I would do it. Which I bring up not to brag, but rather to say I haven't actually tried to work out the problem and I might be completely wrong.
      But yeah, I'm borrowing the segments thing from problems I've done where you treat linear acceleration that way, I don't actually know if it would work for rotation but it seems like it might.

  • @quahntasy
    @quahntasy Před 5 lety +3

    Wish I could be this smart. Very well explained!
    This muon thing is also kind of amazing which gives a direct proof of relativistic time dilation.

  • @alyssag.2530
    @alyssag.2530 Před 5 lety

    Hey, we just talked about this in our physics lecture as an example for time dilation!

  • @PanduPoluan
    @PanduPoluan Před 5 lety

    I have to thank you profusely for this video. I *_finally_* understand about relativity theory's time dilation // length dilation.
    Too many books articles simply wrote that from one's POV, the other's clock seems to run slower, _and vice versa_ ... but if both are running slow against each other, they're either splitting the universe into two realities... or cancel each other ?!?!?! 😫 I give up.
    But your explanation of time dilation from one POV vs length dilation from the other's POV ... NOW EVERYTHING CLICKS INTO PLACE 😃
    Thank you!!

  • @gamereditor59ner22
    @gamereditor59ner22 Před 5 lety +4

    Interesting...🤔 Thank you for the information and keep it up!!

  • @ThePixelPear
    @ThePixelPear Před 5 lety +13

    2:58 Flat Earth confirmed!

    • @Owen_loves_Butters
      @Owen_loves_Butters Před 9 měsíci

      Technically, for a particle traveling at 0.9999999991c (might've messed up the number of 9s there), the Earth would actually be flat for them.

  • @marcogota2325
    @marcogota2325 Před 4 lety

    My physics teacher explained this beautifully to us while talking about special relativity, stuck with me for many years.

  • @gregorypdearth
    @gregorypdearth Před 5 lety

    That was elegant and easy to understand.

  • @kayraaa2646
    @kayraaa2646 Před 3 lety +8

    "If you want cold fusion, you need muons and they ain't cheap."
    "Our world is bombarded with muons that arrive here at relativistic speeds"
    Hmmmmmm.............

    • @tis_ace
      @tis_ace Před 3 lety

      1g of hydrogen has like 6.023 × 10²³ particles.
      U need a metric shit ton(thats alot in imperial) of cosmic rays to produce even a lil bit of muons which would eventually collide with the proton and deutron whi h inturn would catalyse the nuclear reaction.
      But I do have a idea tho, u can use the earth's magnetic field and solar wind dynamic as a giant particle collider to generate muons and catalyse the reactors in space. Also this would greatly decrease the delta v needed to bring the He³ fuel from the moon to earth orbit. The problem would be building the reactors in space and transmission of the generated power

    • @kayraaa2646
      @kayraaa2646 Před 3 lety

      @@tis_ace Do we have to build such a thing in space? Aurora lights start at 80km, inside our atmosphere.
      Building one in space wouldn't really have a huge advantage compared to building a magnetically confined fusion reactor on the ground.

    • @tis_ace
      @tis_ace Před 3 lety

      @@kayraaa2646 auroras are created when the said energetic particles predominantly from the solar wind(some cosmic rays too) are redirected by the earths magnetic field to the polar regions where they come into contact with the upper regions of the atmosphere(hence the 80 km value you gave), by idea was to situate a tokomak or other magnetically confined fusion device in the van Allen belts (the region where the solar wind and cosmic rays are trapped semi permanently) and hence lead to collisions with the confinement thermos thus creating the muons and a bunch of other things which catalyse the fusion reaction.

    • @tis_ace
      @tis_ace Před 3 lety

      @@kayraaa2646 I was banking on the fact that these particles are highly penetrative(on reasonable scales)

    • @kayraaa2646
      @kayraaa2646 Před 3 lety

      @@tis_ace How much magnetic confinement would we need when we're using muon catalyzation too, anyway? I don't think we'd have to send an entire TOKAMAK to orbit.

  • @nixel1324
    @nixel1324 Před 5 lety +40

    0:18 "K-On"s? Cosmic rays are weeb confirmed.

    • @JarieSuicune
      @JarieSuicune Před 3 lety +4

      @1998SIMOMEGA They are referencing en.wikipedia.org/wiki/K-On!

    • @CavCave
      @CavCave Před 3 lety +2

      You're the weeb here.
      Get out of here. We're discussing physics here, not anime.

    • @Sillimant_
      @Sillimant_ Před 3 lety

      @@CavCave cringe

  • @ChrisHoppe-wordmeme
    @ChrisHoppe-wordmeme Před 3 lety

    Time for a shout out thanking the channel for being awesome! 👍👍👍

  • @DXDragon38
    @DXDragon38 Před 3 lety

    Thank you! This was very cool!

  • @Dimensionaught
    @Dimensionaught Před 5 lety +17

    Are the ones created in the lab not going near the speed of light?

    • @TheAgamemnon911
      @TheAgamemnon911 Před 5 lety +6

      not near enough to get the same relativistic effects.

    • @marioa9748
      @marioa9748 Před 5 lety

      I thought the same thing. I couldn't find anything from a quick search but they have something close to 200 times the mass of an electron so I would guess muons we create in lab settings are pretty stationary. Electron's in molecules only go a fraction of the speed of light.
      This is all from browsing around a bit though so I could be dead wrong lol

    • @attilathenun
      @attilathenun Před 5 lety +3

      Mario A Min created in particular accelerators do travel at relativistic speed, but nowhere (or least very unlikely to) near the speed of light for the time dialation to really matter.

    • @robinsuj
      @robinsuj Před 5 lety +2

      At 95% of C the efect reduces perceived time to 31%, at 99%C it's to 14%, at 99.9% to 4.5%, at 99.99% to 1.41%; I hope you see what I'm trying to show. The effects get much larger the closer you are to light speed.

    • @unk4617
      @unk4617 Před 3 měsíci

      I mean they'd have to create the muons at high speed considering we usually make them by literally smashing particles together it'll be difficult to achieve muons speed since the particles which are both colliding are going near light speed so the particles they create only move at a fraction of the speed they had

  • @sesemuller4086
    @sesemuller4086 Před 5 lety +10

    Shouldn’t this also help with cold fusion? The lifetime of muons should greatly increase if the muons travelled close to the speed of light. Thus, they could fuse more atoms...
    just sayin.

    • @taints23
      @taints23 Před 4 lety

      Hmm

    • @diane92157
      @diane92157 Před 4 lety

      to thinking was I what is That

    • @FirstnameLastname-bh9qs
      @FirstnameLastname-bh9qs Před 4 lety +2

      I was also considering this, but in order for Muon fusion to work, you need all of the particles to be traveling at the same speeds, which means that they share a reference frame and have the same degree of time dilation.

    • @matiss234
      @matiss234 Před 4 lety

      en.wikipedia.org/wiki/Muon-catalyzed_fusion

    • @killermaster4937
      @killermaster4937 Před 4 lety

      Not exactly, for a particle to travel in relativistic speeds you need to provide them with relativistic amounts of energy. So this can't help the net energy gain

  • @blammular
    @blammular Před 5 lety

    You should do a video just on the why's and how's of length contraction. That whole concept is crazy.

    • @lunkel8108
      @lunkel8108 Před 5 lety +2

      I think you would appreciate his series on special relativity utilising the spacetime globe, chapter 5 to be exact.

  • @lucianmihail584
    @lucianmihail584 Před 5 lety

    Pefect explanation of special relativity , bravou!!!!!! Thank you!

  • @Noxterous
    @Noxterous Před 5 lety +56

    4minutephysics

    • @ginnyjollykidd
      @ginnyjollykidd Před 5 lety

      😁

    • @WiredUp4Fun
      @WiredUp4Fun Před 5 lety +5

      You can’t have 4minutephysics without minutephysics

    • @XEinstein
      @XEinstein Před 5 lety +15

      For minutephysics it's still minutephysics. He's just moving faster than you are.

    • @kostantinos2297
      @kostantinos2297 Před 5 lety +9

      It's actually one minute that seems from our perspective as four due to time dilation.

    • @blackflash9935
      @blackflash9935 Před 5 lety +4

      Actually 5*
      Because 4:33 or 273 seconds is ~5m or ~300s rather than ~4m or ~240s (If you look at the whole video, because without the sponsorship it is closer to 4m).
      And even though this is a joke, for the people that are curious Henry has said that he purposely didn’t call it
      oneminutephysics so he wouldn’t have that time restriction.

  • @mav7677
    @mav7677 Před 5 lety +7

    So... I've read some books about Einsteins special relativity theory. And there's just one thing I don't understand. For example: - system S' is moving with a speed close to c (as seen from system S). That leads to an time dialation for system S' right? but on the other side, for system S' it looks like system S is moving. So for system S' it looks like time is going slower for system S, right? Now my question is: is there even a time-dialation? Because in the twin-paradox theres just a timedialation because of exelleration. - Or is there actually something like an absolute perspective, where you can tell from that the one object is moving and the other isn't? You would really help me out if someone could explain all of this... (need to know it for a presentation). - ps: im not english... so sorry if my comment sounds stupid.

    • @Bodyknock
      @Bodyknock Před 5 lety +5

      MAV Acceleration isn’t the reason for the twin paradox, it’s that the twin in the spaceship experiences two different inertial frames of reference versus the Earthbound twin experiencing only one frame of reference the entire time. Acceleration doesn’t enter into the calculations.
      There is no absolute perspective, everything believes it is at rest in its own inertial frame and there isn’t some absolute frame that everything can agree on. What is absolute is the speed of time, aka the speed of light. No matter what frame of reference you are in you will always see light traveling the same speed in a vacuum. It’s from that absolute that the rest of relativity such as time dilation and length contraction follows.

    •  Před 5 lety +1

      Even if it's not the right eay to think of it, i found that the frame of reference that used more energy has the actual time dilation. If you think about it, to get moving from the earth you can either put some energy to move yourself OR build massive rockets to move the earth away from you. In the second scenario, you would age faster than your twin on the earth. Here the muon has a longer lifespan because he was created by high energy beams in the upper atmosphere, while the detector did not move at all, thus not consuming any energy, to hit the muon.

    • @Azzinoth224
      @Azzinoth224 Před 5 lety +8

      MAV Doug Rosengard is correct, Riccardo not. This is a common misconception about relativity, but i will try to explain it to you.
      There is a difference between relative and absolute quantities. Absolute quantities are the same for every observer, relative quantities are different for every observer. For example in classical physics the length of a car would be considered an absolute quantity, because for an observer inside the car it would have the same length than for an observer ouside the car watching it drive. In classical physics the length of objects is the same for every observer. The number of fingers on your hands would also be an absolute quantity, because every observer, whether or not he is moving, would agree that you have 5 fingers on each hand.
      Velocity would be an example for a relative quantity. The observer inside one car thinks that the car has a velocity of zero, and if there would be a second car driving next to him with the same speed, he would say that the second car has also a velocity of zero relative to him. For for an observer on the side of the street both cars have a velocity v not equal to zero. So now a good question would be: How is it possible that the same car has two different velocities simultaniously? Isn't that a condratiction? The answer is that for every observer the car has only exactly one velocity, but it can have a different velocity for every observer. Velocity is a relative quantity. But is that real? Or is one velocity actually right and it just looks like the car is moving or not moving for the other observer? Well think about it: If the observer in the first car reaches his hand out of the window and touches the second car next to him, he can do that without hurting his hand, even though the cars are driving at high speeds. So for the observer inside the first car the measured velocity of zero for the second car is totally real, with all its physical consequences. For the observer on the side of the street the situation is like this: If he reaches out to touch the car, his hand will get hurt because for him the car has a velocity, with all its physical consequences. Both observers measure different speeds, both are right and the respective speed is real for each of them.
      Now in special relativity the number of fingers on your hand is still an absolute quantity, but length's and times are now relative quantities. In some experiment one observer might say "My own clock is going faster", while the second observer says "No, my clock is going faster". Also the first observer claims that his car is longer, while the second observer disagrees. The above example with velocity was easy to understand, because it is intuitive from our everyday experience. With length and time it is not so intuitive, but it really is the same thing, so we can ask the same questions: How is it possible that the same car has two different length's simultaniously? Isn't that a condratiction? The answer is that for every observer the car has only exactly one length, but it can have a different length for every observer. Length is a relative quantity. But is that real? Or is one length actually right and it just looks like the car is shorter or longer for the other observer? The answer is the same as with velocity: Both observers measure different length's, both are right and the respective length is real for each of them, with all its physical consequences. The same it true for time.

    • @Bodyknock
      @Bodyknock Před 5 lety +1

      @ It's not about using more energy either. For example, there is a variant of the twin paradox that the Fermi Lab channel has a CZcams video about involving three people all of whom travel at constant speed with no acceleration or change in direction. You get the same effect of a travelling clock leaving Earth and coming back experiencing less time than a clock that stayed on Earth but without any acceleration or differences in energy expenditure. It's simply because the out-and-back clock goes through two frames of reference while the stationary clock only experiences on frame of reference
      czcams.com/video/GgvajuvSpF4/video.html

    • @altrag
      @altrag Před 5 lety +1

      @@Bodyknock That video's explanation is.. not quite right either. The observers may not experience an acceleration, but there is one hidden acceleration involved there: When B and C cross, the time measurement has a flipped sign. In the video's graphical depiction, there's no effective difference between the description at ~7:00 and a scenario where B somehow manages an instantaneous reversal of motion at point 2, which is equivalent to a very large instantaneous acceleration.
      Now I'm sure mathematically that's probably irrelevant (much smarter people than me have worked on this for a long time,) but it was still a bit jarring to notice (Don's videos are usually spot on.. not surprising being Fermilab and all.) I got a "that's not quite right" vibe almost immediately but it took me quite a while and a few reruns of the video to pin down the actual problem!

  • @robertlinke2666
    @robertlinke2666 Před 5 lety

    okay, that is actually really cool, and puts a sense of reality onto otherwise very abstract concepts.
    thnx guys!

  • @iknowredstone1234
    @iknowredstone1234 Před 4 lety

    thanks U explained a lot of my questions

  • @ThatPsdude
    @ThatPsdude Před 5 lety +3

    But from my perspective the Jedi are evil! :O

  • @bornmercurial1557
    @bornmercurial1557 Před 5 lety +288

    I didnt even knew that there is a thing called muon😅😅😅😅😅😅

    • @flemlius3507
      @flemlius3507 Před 5 lety +7

      In Germany it! Myon, you say it like Müon.
      The more you know...

    • @mairisberzins8677
      @mairisberzins8677 Před 5 lety +3

      @@flemlius3507 In Latvia people are so dumb there isn't even a word for muon. Since the really smart professors often aren't local they just use english word

    • @TheShootist
      @TheShootist Před 5 lety +2

      that what made Fatman to go boom.

    • @TobiasWeg
      @TobiasWeg Před 5 lety +2

      I didn't know either, until I saw one captured in an detector similar to the drawn one in the video, at the DESY accelerator in Hamburg. Very impressive way to detect particles.;) Highly recommended, if u have the chance to see the detection in person. here a video of it czcams.com/video/223-pFkIKE0/video.html

    • @TheAgamemnon911
      @TheAgamemnon911 Před 5 lety +1

      @@TheShootist I thought tiny plates of mint chocolate do that.

  • @krisv8407
    @krisv8407 Před 3 lety

    Didn't know what muons were before this video but surprised by what I have learned. Great stuff!

  • @philjamieson5572
    @philjamieson5572 Před 4 lety

    I think this is nicely explained. Thanks.

  • @mr.j_krr_80
    @mr.j_krr_80 Před 5 lety +4

    So you people thought there are no "cat" stuff on this episode?
    The MEWons laugh at you.

  • @TwinShotz
    @TwinShotz Před 5 lety +65

    Wish I could be this smart...

    • @SkateGeneva
      @SkateGeneva Před 5 lety +9

      Just go to school

    • @Trias805
      @Trias805 Před 5 lety +27

      If you really want (not just wish), then you can. Just study one thing at a time and eventually you'll get there.

    • @ginnyjollykidd
      @ginnyjollykidd Před 5 lety +7

      Keep reading. Keep watching. Minute Physics has awesome explanations for lay people that are inclusive!

    • @TwinShotz
      @TwinShotz Před 5 lety

      RedOnTheHead - I agree

    • @TwinShotz
      @TwinShotz Před 5 lety

      Claudio Jaramillo that’s silly 😂

  • @TheTechovision
    @TheTechovision Před 5 lety

    I got to do a similar verification experiment in 2nd year physics. I have to admit it was quite the mind blowing realization that SR could be confirmed in such an elegant fashion! Thank you for reminding me of this! :D

  • @Phantomthecat
    @Phantomthecat Před 5 lety

    Very well explained - thank you. 👍

  • @EinkOLED
    @EinkOLED Před 5 lety +3

    I eat muons for breakfast, extremely fast.

  • @elonhusk5203
    @elonhusk5203 Před 5 lety +3

    Notification squad :)

  • @petslittleworld
    @petslittleworld Před 5 lety

    Wow, how nicely explained.

  • @crimsonkiras
    @crimsonkiras Před 5 lety

    i remember learning about this for year 12 physics, it's so interesting!

  • @larax222
    @larax222 Před 5 lety +10

    Hehe, great vvideo even before I watch it I know it

    • @larax222
      @larax222 Před 5 lety

      @@DeadlyNerotoxins I do not consider myself special I simply guess this video will follow trend of this channel, meaning this is going to be a great video. There are enough samples for me to safely predict this video will be great without actually seeing it. then I watch the video and confirm that indeed it was great video, as it was according to my prediction

    • @DeadlyNerotoxins
      @DeadlyNerotoxins Před 5 lety +2

      @@larax222 i interpreted your comment wrong man, thought you were bragging that you knew the info in the whole video before you watched haha my mess up

    • @larax222
      @larax222 Před 5 lety +1

      @@DeadlyNerotoxins no worries! ^,=,^

  • @feynstein1004
    @feynstein1004 Před 5 lety +5

    Wait, isn't there a contradiction here? At 0:42, the half-life of the muon measured relative to us is 1.5 microseconds and then at 2:09 the half-life of the muon measured relative to us is 22 microseconds? Hmm I guess this would make sense if the muons in the former case were traveling much slower than the latter case. But aren't muons produced in the lab traveling at 99.9% the speed of light as well? Idk

    • @izbiskigaming1535
      @izbiskigaming1535 Před 5 lety

      Averages

    • @FRD357
      @FRD357 Před 5 lety +4

      50% of any amount of muons decay in 1.5 microseconds, the average decay rate for any one is 2.2

    • @ds-1111
      @ds-1111 Před 5 lety +3

      This was my question too. How fast are the Muons traveling when we create them in a lab? The video says they average 2.2 μs half-life in a lab from our perspective, but then later say that outside the lab and with time dilation they travel 2.2 μs from the Muon's perspective which is 22 μs from our perspective. Something is wrong.

    • @timseguine2
      @timseguine2 Před 5 lety +1

      Every 9 after the decimal place makes a big difference to the calculated time dilation. If you are talking about time dilation there is a huge difference between 99.9% of the speed of light and 99.99% of the speed of light. Also: I think in a particle accelerator, the protons they are colliding have 99.9% of light, but that doesn't necessarily say anything about the speed reaction products.

    • @garethdean6382
      @garethdean6382 Před 5 lety +5

      Lab-created muons are moving relatively slowly; a few percent the speed of light. So they experience very little time dilation and have an average half life of a few μs. Atmospheric muons are made by cosmic rays. We think it's possible neutron stars of black holes act as giant particle accelerators for these One, the 'Oh my God' particle, had the kinetic energy of a home-run baseball... in a single proton. Imagine an ATOM hitting you and knocking you out... So these make muons that can travel at a hair below light speed, almost frozen in time and with half lives (To us) of hundreds of μs.

  • @namon2287
    @namon2287 Před 4 lety

    Awesome video, thank you

  • @kylerossmannn
    @kylerossmannn Před rokem

    this is the best video ive watched on youtube to date

  • @Vishal-yl2lx
    @Vishal-yl2lx Před 5 lety +7

    You don't know but you have a portion of audience who watch your videos to fall asleep fast!

    • @smurfyday
      @smurfyday Před 5 lety +3

      Who cares about the dumb ones.

  • @BobMcCoy
    @BobMcCoy Před 5 lety +3

    *What a pee on*

  • @dariapavlova8118
    @dariapavlova8118 Před 5 lety

    Henry, you are the best. Thank you!

  • @benjohnston9455
    @benjohnston9455 Před 5 lety

    even with only having a laymans sense of quantum mechanics and relativity this is an awesome video to explain a few concepts in quick and easy to digest format.

  • @satviksharma1146
    @satviksharma1146 Před 5 lety +11

    It's NOT a paradox bro.

    • @Bodyknock
      @Bodyknock Před 5 lety +8

      Satvik Sharma It’s a veridical paradox (i.e. something that sounds contradictory but isn’t) as opposed to one of other types of paradoxes. (Not all paradoxes are logical contradictions.)

    • @culwin
      @culwin Před 5 lety +1

      So it both is and isn't a paradox. That's very contradictory.

    • @ggghhh8797
      @ggghhh8797 Před 5 lety +3

      @@culwin so it really is a paradox

  • @supremeintelligence746
    @supremeintelligence746 Před 5 lety +4

    First like

  • @Hellspawn1379
    @Hellspawn1379 Před 5 lety

    Great, the universe is great, happy to live and understand a short part of it, thanks for your videos!

  • @rodfer5406
    @rodfer5406 Před 5 lety

    Very well explained