The BIGGEST problem with clean energy

Sdílet
Vložit
  • čas přidán 6. 06. 2024
  • To reach our global goal of being net zero carbon emissions by 2050, we must solve one problem - energy storage. Thank you to Toyota for lending us the #Mirai and for sponsoring this series. Scientists, researchers, and engineers are working to develop innovative ways of addressing the intermittency of wind and solar energy. I got to talk to them in part 3 of my renewable energy road trip with Toyota in their #Mirai
    Previous videos in this series:
    The Truth about Driving a Hydrogen Car [ • I drove 1800 miles in ... ]
    Hydrogen vs. Battery Electric Cars [ • Hydrogen vs. Battery E... ]
    Upcoming video in this series:
    Concentrated Solar
    Creator/Host: Dianna Cowern
    Editor: Levi Butner
    Producer: Hope Butner
    Production Assistant: Laura Chernikoff
    Story Consultant: Patrick Muhlberger
    Research: Sophia Chen and Erika Carlson
    Support Physics Girl
    / physicsgirl
    physicsgirl.org/
    / thephysicsgirl
    / thephysicsgirl
    / thephysicsgirl
    Special thank you to our X-Ray tier patrons: Carlos Patricio, David Cichowski, Eddie Sabbah, Fabrice Eap, Gil Chesterton, Isabel Herstek, Margaux Lopez, Matt Kaminski, Michael Schneider, Patrick Olson, Vikram Bhat, Vincent Argiro, wc993219
    Resources:
    unfccc.int/sites/default/file...
    highwaysengland.co.uk/netzero...
    iea.blob.core.windows.net/ass...
    www.iea.org/reports/net-zero-...
  • Věda a technologie

Komentáře • 4,3K

  • @physicsgirl
    @physicsgirl  Před 2 lety +684

    There are so many more discussions to be had around paths to using 100% renewable energy sources. I imagine some of you might suggest regulation or incentives for using energy when it’s most available to fix the supply and demand issue, i.e. the “duck curve.” Some municipalities already do this, and it works to an extent! Consider though, a supply like wind - the unpredictability makes it hard to exactly match the demand schedule to the supply. Another solution is to add other sources of energy that are more consistently available, like waves, and nuclear fission/fusion. (We actually visited a company looking into a wave energy technology!) I’d love to make more videos on these technologies, but we decided to focus this video specifically on energy storage technologies emerging as a solution to the Duck Problem.

    • @monk9008
      @monk9008 Před 2 lety +4

      Hey

    • @Nineteen693
      @Nineteen693 Před 2 lety +2

      🖐️

    • @localtitans4166
      @localtitans4166 Před 2 lety +11

      The content is really something ,i feel, is important and interesting .

    • @westonding8953
      @westonding8953 Před 2 lety +17

      Geothermal energy might also be considerable consistent. Storing that might be useful too.

    • @kalvindeane1
      @kalvindeane1 Před 2 lety +10

      What do you think of hot, liquid-metal batteries for grid storage, like Ambri? Snake oil or a real contributor to balancing a renewable grid?

  • @Libero6
    @Libero6 Před 2 lety +437

    "Many juices for many uses" needs to be on your merch

  • @papaelf
    @papaelf Před 2 lety +36

    What we have to realize is that there are MANY options and we don't need just 1 solution. We need the solutions that work best in whatever area. As long as the energy is renewable it's great.

    • @georgevue8175
      @georgevue8175 Před rokem

      A viable question is: How much CO2 does it take to build, install & maintain a windmill? And how long is the ROI? When is the break even point for both CO2 and the financial cost? Also since communist China owns the lithium mining, solar panel & windmill building markets is it really in the USA's best interest for China to own our energy market?

    • @GamePois0n
      @GamePois0n Před rokem

      @@georgevue8175 US has the capability to start lithium mining, just it's not profitable to do so so it's not being done at a fast pace. it's mostly mined in dry area as that's how lithium is formed, also china don't "own" the lithium mining, that's Australia, Australia export them to china for refinery.

  • @MrWhiteVzla
    @MrWhiteVzla Před 2 lety +11

    I don't know if Diana will ever read this, but I still want to express my admiration and joy to her. I remember finding her channel ages ago thanks to ViHart. The Physics Girl channel only had a handful of subscribers and a couple of videos with low views. After watching one video, I loved her content and expressed my wishes for her to get more attention. Now, she is working with Toyota after her stint with PBS, and it's been a pleasure to watch her grow.
    I think my favourite part, and why have supporter her at different capacities throughout the years, is that her message hasn't changed. She is still trying to explain things, and show that science is a fun endeavour where being wrong is ok and not knowing something means an opportunity to learn and grow.
    Thank you Diana. When it comes to me, I can say that you affected my life in a positive way. I wish you many more years of success and growth!

  • @Benisuber1
    @Benisuber1 Před 2 lety +328

    I researched "Grid Level Energy Storage" in 2014 for my chemical engineering design class my senior year of college. I remembered a few of the storage options presented in this video, but I was actually able to find the presentation and it's interesting to me how it matches up 7 years later.
    Our criteria, in order of weight, were as follows.
    30% - Longevity of the battery, targeting 25+ years, or ~10,000 charge cycles, of useable life and weatherability
    30% - Performance, targeting 90% energy efficiency with high energy-density, ideally as good or better than Li-ion 250 Wh/kg, and ability to store up to 500 MWh of electricity (to replace the avg coal plant)
    20% - Toxicity of the materials used in the energy storage- this is probably the weakest criteria in the presentation
    10% - Infrastructure required to make/use the energy
    10% - Cost of storage method in $/kWh
    The most promising energy storage we found via these criteria was a liquid metal battery. From our research we found they would last conservatively for 15+ years, have up to 90% energy efficiency with around 200 Wh/kg energy density, plentiful and (relatively) low toxicity elements Magnesium and Antimony (generally any 2 metals with different densities), and a projected cost of ~$50/kWh once production is in full swing. Nice to see that one of our sources at the time, Ambri, is still chugging along and making their batteries. ambri.com/technology/
    Next best in our estimation was 'pump-storage', which as Dianna has thoroughly described it is widely used, has good efficiency and makes use of existing geographies to store energy, but the downfalls are that there's not much room to expand and there is a high capital cost to create more storage of this type.
    3rd was the Vanadium flow battery, which again I don't need to rehash since the video has the same conclusions our group came to. Easier to scale than Li-ion, but otherwise not much of an improvement.
    Last in our estimation was scaling Li-ion batteries to grid-level energy storage. The safety concerns along with limited availability of Lithium create the need for other sources.
    One interesting addendum to the project was a zinc-air battery that was in early stages of research in NYC. This was essentially zinc cells in a shipping container, which was a funny picture to me. www.aiche.org/chenected/2014/07/testing-zinc-air-battery-storage-new-york-city-grid
    Seems like this idea (metal-air) is still being innovated 7 years later. www.rechargenews.com/energy-transition/worlds-cheapest-energy-storage-will-be-an-iron-air-battery-says-jeff-bezos-backed-start-up/2-1-1044174
    Anyway, this was an awesome video and it allowed me to reminisce on a project I was very passionate about 7 years ago. Maybe its time to rekindle that passion...

    • @forlornendeavor9183
      @forlornendeavor9183 Před 2 lety +10

      I’ve heard about liquid metal batteries, Real Engineering did a video a while back about them. Kinda bummed they didn’t make into this video, but still cool seeing all these other types of energy storage

    • @darioadrianz
      @darioadrianz Před 2 lety +1

      Good data! 📝

    • @Tom89194
      @Tom89194 Před 2 lety +4

      If we are going to need huge storage mediums for electricity, we should look at the liquid metal battery. It seems to have the lowest cost of refurbishment, the recycling of the major components is probably going to be the most cost effective of any battery types i have learned about. Lithium batteries should be considered a joke to use on large scale to anyone with a 'green' mindset. They have their place where power to mass is important, but any stationary units that don't care about mass should use something more suitable than a container full of thousands of cells that must be kept cool, keeping something warm/hot is much easier.

    • @5353Jumper
      @5353Jumper Před 2 lety +5

      How did Li batteries fair if considering re-using expended automotive batteries?
      Basically on the whole Reduce/Reuse/Recycle plan it would be better if we could take old batteries from bEV and use them in grid scale storage for another 10-20 years before we send them off to recycling (hopefully a good recycling method is achieved by then).
      So they may not be the best battery solution for raw production of the solution but if they are just laying around then why not?

    • @charliedoyle7824
      @charliedoyle7824 Před 2 lety +3

      Lithium-ion will get very cheap and reliable. There is so much investment into several li-ion chemistries that they will continue getting cheaper and better.
      And there isn't a shortage of lithium. The price may go up temporarily as traditional sources get stretched, but the Earth's crust has plenty of lithium. There will be many new ways of mining it, including from ground water and the ocean. Ultimately, lithium won't be the limiting factor of the success of li-ion batteries, it will be the other elements.
      For grid storage, the LiFePo chemistry is ideal because iron and phosphorous are plentiful, so it's a matter of manufacturing scale to make LiFePo really cheap, which is certain. It will likely go below $50/kWh by 2030. I wouldn't be surprised to see $30/kWh, which is cheap enough to combine with renewables and a cheap long-term storage like iron-air to shut down all thermal plants.
      If LiFePo doesn't get that cheap, there will be other li-ion chemistries, plus lithium-metal batteries, coming soon. Surely one of these batteries will get very cheap in the near- to medium-term.

  • @sch1sm115
    @sch1sm115 Před 2 lety +246

    'Not sure they've ever seen a duck' 😂😂😂

    • @benoithudson7235
      @benoithudson7235 Před 2 lety +12

      *Finally* someone calls out the emperor's clothes!

    • @55Ramius
      @55Ramius Před 2 lety +6

      Yes, that made me laugh. : )

    • @jgv4945
      @jgv4945 Před 2 lety +2

      Not sure you have ever heard something funny.

    • @sch1sm115
      @sch1sm115 Před 2 lety +4

      @@jgv4945 not often enough buddy, but when I heard Diana say this it legitimately gave me an overdue laugh

    • @christophersmith3216
      @christophersmith3216 Před 2 lety +4

      Just like the astronomers when it comes to naming constellations

  • @kendesmarais9018
    @kendesmarais9018 Před 2 lety +2

    I found your channel by mistake but now I love your videos! Keep em coming, great job!

  • @flagmichael
    @flagmichael Před 2 lety +19

    You have hit the nail on the head! An underappreciated aspect to "on demand" energy in bulk electric power is grid stability. We tend to think of blackouts being the result of insufficient generation, but virtually every blackout is the result of instability. The rise of "remedial action schemes" is a big plus but it is not magic. Historically, automatic grid controls were disconnections to prevent damage to equipment; the concept is that the safest state is "all fall down." Now it is about surgically disconnecting sources of instability. (Recently retired from a Fortune 100 electric company as an IT field tech with emphasis on energy delivery.)

  • @darthmoomoo
    @darthmoomoo Před 2 lety +88

    1:48 "Supply of lithium is supposed to run out by 2080". [citations needed]. lithium is the 25th most abundant element on Earth. The total lithium content of seawater is 230 billion tonnes. Newer methods of extraction will soon make all of this readily accessible.
    en.wikipedia.org/wiki/Lithium#Terrestrial

    • @lesliefranklin1870
      @lesliefranklin1870 Před 2 lety +2

      Also, there's GOLD in that tharrr seawater. 😀

    • @SeanLinsley
      @SeanLinsley Před 2 lety +38

      someone on Toyota's hydrogen team probably told her that and she unquestioningly accepted it. there's a reason why most youtubers don't do sponsored videos like this anymore: it's impossible to remain impartial and even with the best intentions you *will* end up misleading your viewers
      note: from a bit of searching, the 2080 number is an estimate for when terrestrial supply will run out. in 60 years we will surely have found new reserves, or will have improved technology to purify metals from ocean water (a technology we will need to handle pollution anyway)

    • @TheScarnak
      @TheScarnak Před 2 lety +23

      This video isn't fact checked very heavily. The same is true for the others in this series. Which is a shame as I thought this channel was reliable.

    • @SeanLinsley
      @SeanLinsley Před 2 lety +33

      I was about to come back and say some good things about this video... until I got to the proposition to turn old mines into hydrogen storage facilities. that is impossible for the same reason the original hyperloop concept was (it's very difficult to maintain a vacuum at that scale), but this time in reverse with tiny hydrogen atoms easily passing through fractures in the rock.
      and moments later the quiet part was said out loud: the entire goal here is to reuse as much oil and gas infrastructure as possible. it's all about saving investors, not about choosing the best technologies to fit our needs

    • @TheScarnak
      @TheScarnak Před 2 lety +6

      @@SeanLinsley Well said. A lot of people are blind to that last point you've made.

  • @mencken8
    @mencken8 Před 2 lety +340

    At least here’s a video talking about this subject from the correct angle: there is plenty of energy, we just lack effective ways to store what is generated.

    • @autohmae
      @autohmae Před 2 lety +4

      Yes and no, I think some people haven't done the math, Tony Seba and team did, jusst watch: Rethinking Energy -- 100% Solar, Wind and Batteries Is Just The Beginning

    • @LeDuckDuckGoose
      @LeDuckDuckGoose Před 2 lety +30

      yes and no. the biggest barrier is trying to create all these green techs without causing the same pollution that is destroying the planet. Your smart phone has over 60 different metals in them, all dug up from different parts of the earth, moved to be refined, moved to be processed, then moved to be assembled and moved to be consumed. And that's just your tiny smart phone, we want to electrify everything. The largest hurdle will be to convince society we don't need as much stuff, then we simply do not have to make it and will not pollute. But goodluck doing that.

    • @rauminen4167
      @rauminen4167 Před 2 lety +6

      .... Or to transport it to consumers once it's stored. The current grids simply can't take the increased demand. Of course we know how to lay down more wires and there's some promising new tech there too - but either way it's a huge undertaking.

    • @Tore_Lund
      @Tore_Lund Před 2 lety +2

      @@autohmae It depends of the amount of excess renewable capacity is reasonable? We could put up enough wind and solar to meet demand in the dead of winter and likewise improve the load sharing between providers and then use the excess in summer to make Hydrogen or sythesized fuels. This is still storage, but from another perspective, where fluctuations are covered by overcapacity and the excess is used for other things. Industry has a lot of processes that could be converted to electricity, this is about much more than just EVs. They could also be a power sink for excess renewables to make raw materials for production the rest of the year..

    • @autohmae
      @autohmae Před 2 lety +3

      @@Tore_Lund I definitely agree. But the point is: in 10 years production with solar will be over 70% cheaper than it's now if the trends continue as they are.

  • @ranachhugani3090
    @ranachhugani3090 Před 2 lety +16

    Makes me really hopeful seeing so many of people coming up with these great ideas and efforts to solve the energy problem. thanks for sharing!

    • @DMP413
      @DMP413 Před 2 lety

      Could have been done 50 years ago

    • @alternajarsandbladesforble8896
      @alternajarsandbladesforble8896 Před 2 lety +1

      we really don't have an energy problem, other than the one that politicians create for us. Just get a nuclear power plant, problem solved. Then we have to deal with the storage of the nuclear waste of course. And that bugs me. Reliability is more important than finding 'net-zero', which in my opion does not exist. There is only a transition of energy forms from one form to another.

  • @Raichle9
    @Raichle9 Před 2 lety +2

    Many juices for many uses! That is great!👍🏽
    This video increased my understanding of the technologies needed for energy storage. Thank you.🙏

  • @samedwards6683
    @samedwards6683 Před 4 měsíci

    Thanks so much for creating and sharing this educational and entertaining video. Great job. Hope that each day you are feeling better than the day before.🙏

  • @tojo.3
    @tojo.3 Před 2 lety +97

    I am in college right now learning about energy storage and I just HAVE to let you know; Diana you are amazing!!!!

    • @ahblooloo8639
      @ahblooloo8639 Před 2 lety +2

      The video was very wishy-washy about emerging storage solutions. Terms like "round trip efficiency" paint a very rosy picture, but on practice they lose 90%+ of energy (at least in hydrogen and "thermo-photovoltaic" batteries), before even capturing it and the real efficiency of these batteries are single percentage points, if that, compared to the energy that was put in. On the other hand oil, gas, coal, etc. are tens of times more efficient on practice, unsurprisingly that's why they are so popular.

    • @hitreset0291
      @hitreset0291 Před 2 lety +6

      @@ahblooloo8639 hi troll.

    • @beactivebehappy9894
      @beactivebehappy9894 Před 2 lety +1

      @@hitreset0291 He is but he is true for some points. For me the fusion source of energy seems to be the most efficient but that is not tangible right now…Don’t worry coal/petrol is soon going to be phased out at least by 2070 or maximum 2080

    • @davidpowell8249
      @davidpowell8249 Před 2 lety

      @@beactivebehappy9894 fusion is a fools errand, if you are hoping for it to be ready soon enough to help against climate change. At the moment, fusion experiments don't even break even, which means they consume more power than they generate, and that's even before you even consider converting that energy into electricity and the losses that entails.
      Then there's the expense. Nuclear fission power station projects struggle to get off the ground due to the huge up front costs, but the economics of nuclear fusion is even worse.
      Advanced fission on the other hand, like molten salt reactors, based on the 1960s ideas proven by molten salt reactor experiment (MSRE), could come to market in time, especially if governments focused on them. They would also be massively safer and have far lower consequences in the event of an accident than traditional fission reactors.

    • @davidpowell8249
      @davidpowell8249 Před 2 lety +1

      If you are in college, may I suggest reading "Sustainable energy without the hot air" by Professor David JC MacKay, the late Chief scientific advisor to the UK's Department of Energy and Climate Change.

  • @jameskolan9195
    @jameskolan9195 Před 2 lety +8

    In our rural district we have frequent power outages due to bad weather. We will soon have a system in place to store water in two man-made lakes which will be released to create power for the area when the lines are down. The water will be released when the main line electricity is out and then pumped back up from a lake below using solar power. Nice solution for an area with lots of water and lots of outages.

  • @petarkolev6928
    @petarkolev6928 Před 2 lety +2

    Love you and what you do! Thank you for the wonderful videos ❤

  • @MisterLobb
    @MisterLobb Před 2 lety +3

    There was a symposium in 2008 at MIT about alternative energy. It looked at availability, cost, environmental impact, and ability to use/store in a variety of environments and locations. The consensus was geothermal provides the best option. I think you would find it interesting. It should still be available online maybe through MIT open courseware open university.

  • @Michael-Ray
    @Michael-Ray Před 2 lety +303

    Physics Girl has recently turned into Energy Girl.

    • @MFARIGA
      @MFARIGA Před 2 lety +21

      Ecology issue are so important and action right now so little that this is great that she talk about it.

    • @MrLuc420
      @MrLuc420 Před 2 lety +51

      Energy is physics

    • @VitaliyCD
      @VitaliyCD Před 2 lety +6

      As a recently-graduated electrical engineer, I am not complaining. :)

    • @VitaliyCD
      @VitaliyCD Před 2 lety +2

      @@MrLuc420 Yesssss, 100%!

    • @AerialFrameworks
      @AerialFrameworks Před 2 lety +6

      E = MC^2
      E is for energy :)

  • @marktalley2550
    @marktalley2550 Před 2 lety +56

    “Many juices for many uses” - pure genius😹😂😂😎

  • @andrewroberts5988
    @andrewroberts5988 Před rokem

    Excellent video. I just finally subscribed! Thank you.

  • @mujibamirali
    @mujibamirali Před 2 lety

    I am 60, takes me to watch twice to understand 10% of it. But I enjoy to see the future energy storage. Love your way of explaining in simple way. Keep it up. I have subscribed yr channel too.

  • @mcdon2401
    @mcdon2401 Před 2 lety +133

    Tom Scott released a video in the last few days showing similar problems in the Orkney Islands. With all the different tech being tested, there's far more supply than demand most of the time, and the interconnect to the main grid is nowhere near robust enough to export all of it. Nobody wants to upgrade the interconnect unless they can be guaranteed to increase the amount of energy produced, but nobody will commit without the upgrade being done 🤦‍♂️🤦‍♂️🤦‍♂️

    • @SrikarMaddula
      @SrikarMaddula Před 2 lety +9

      Bureaucrats as usual.

    • @sietuuba
      @sietuuba Před 2 lety +11

      @@SrikarMaddula Based on economic motives because bean counters need to know beforehand who's going to cover how much of the billions it costs, regardless of how critical it may be to get it going. Twisted financial motivations, not bureaucracy... though sometimes they join forces in effecting the opposite of forcing wasteful decisions through regardless.

    • @BlahVideosBlahBlah
      @BlahVideosBlahBlah Před 2 lety +2

      Perhaps the Orkney Islands just need to fill tankers full of hydrogen or hydrogen-rich compounds for export. Maybe use the Sabatier process to fix atmospheric CO2 into methane and ship refrigerated tanks of liquid CH4 to other countries. Ultra pure methane by the tens of thousands of tons ought to have a decent market value.

    • @garethbaus5471
      @garethbaus5471 Před 2 lety +3

      @@BlahVideosBlahBlah natural gas is a cheap enough source of methane that it wouldn't be profitable to sell methane in this way, but they could probably use the extra electricity to make easy to ship energy intensive commodities like aluminum or steel.

    • @kenhensch3996
      @kenhensch3996 Před 2 lety +4

      @@BlahVideosBlahBlah From toms video they actually do produce some hydrogen with their waste energy and they are working on powering their ferries with that hydrogen. They are a small town so you can't really expect massively innovative solutions for such a unique problem.

  • @tmrogers87
    @tmrogers87 Před 2 lety +61

    This series is really cool and has helped me understand energy challenges in a much more tangible way, thanks!

    • @SupremeRuleroftheWorld
      @SupremeRuleroftheWorld Před 2 lety +2

      please bear in mind that these videos are seriously biased towards hydrogen bases systems wich are made by toyota. these videos do not reprisent a fair and balanced comment about the actual problems in these areas. these are paid advertisements by toyota trying to make hydrogen happen despite it consuming 5x more energy to produce and consume then straight batteries or even hydro storage. something either casulally ignored or glossed over in these advertisements. its looks pretty bad that you need 5x or more the energy production to make hydrogen happen then just straight up battery storage.

    • @tmrogers87
      @tmrogers87 Před 2 lety

      @@SupremeRuleroftheWorld the sponsorship by Toyota is very transparent, fwiw

    • @SupremeRuleroftheWorld
      @SupremeRuleroftheWorld Před 2 lety

      @@tmrogers87 the brand is fairly obvious and i am not talking about the branding but that the content is biased towards hydrogen. unless you know a lot about this subject its impossible to understand this is biased content.

  • @humbertosequeira1536
    @humbertosequeira1536 Před 2 lety

    Great video, I am glad to see people investigating and developing diff energy sources, because we need them, only one couldn’t achieve all the objectives

  • @jchrisbotz6035
    @jchrisbotz6035 Před 2 lety

    thanks for the information and hopeful outlook.

  • @JesudeGannes
    @JesudeGannes Před 2 lety +99

    I think if Nuclear energy is developed properly, there'll be far less need to develop storage. Also, there'll be a massive excess of energy in the form of heat and electricity available, no need to focus on efficiency or worry about storage capacity limiting use.
    I could be wrong, but I feel like there is massive potential there.

    • @SrikarMaddula
      @SrikarMaddula Před 2 lety +6

      I think the major problems regardless of how it's developed (using current tech anyway) are the nuclear waste which generated and also even the mild possibility of a Nuclear Disaster is something the general population is very afraid of.

    • @ElPsyKongroo
      @ElPsyKongroo Před 2 lety +6

      @@SrikarMaddula we can reuse thorium via thorium salt reactors, I don't think there's an efficient way known to use the waste from thorium though

    • @dnocturn84
      @dnocturn84 Před 2 lety +2

      @@ElPsyKongroo Thorium reactors can only recycle 5% of the generated nuclear waste from nuclear power plants, which are old fuel rods (and which would be awesome), with an efficency of 95%. The remaining nuclear waste of 95% can't be used in a thorium reactor. So this isn't really a solution for the whole problem, only for a (tiny) fraction of it.

    • @ElPsyKongroo
      @ElPsyKongroo Před 2 lety +1

      @@dnocturn84 oh interesting. Can you source me on that? I would love to read more on the actual percentage of waste that can be recovered

    • @solandri69
      @solandri69 Před 2 lety +7

      I'm a big nuclear proponent, but it actually has the opposite problem of renewables - it's very slow to ramp up and down. The radionuclides generated from fission continue to decay and generate heat long after you've stopped fissioning uranium. As a result, nuclear is best used if you run the plants at 100% capacity all the time (well, slight downtime for maintenance). You still need some sort of energy storage tech to help shape the power generation curve to match the consumption curve.
      Currently on our grid, the power sources used for this are hydro (it ramps up and down very quickly, although the amount it can generate in a year is fixed based on rainfall), and gas. Coal to a lesser extent (coal plants take on the order of hours to heat up/cool down boilers, so they run during the day when demand is highest, are turned off at night when demand drops).
      It's also worth pointing out that from an efficiency standpoint, it's not worth storing power until nuclear or renewable energy exceed 100% of consumption. If you're still burning fossil fuels but you use (say) batteries to store solar power, you're actually increasing the amount of fossil fuels burned. By using the solar power to charge your batteries instead of sending that power to the grid, you're causing more fossil fuels to be burned during the day. At night less fossil fuels are burned because you can use your battery. But the efficiency loss of charging/discharging the battery means that the battery gives you less power than the solar that was used to charge it. So the increase in fossil fuel usage during the day is greater than the decrease at night, thanks to your battery. This loss is acceptable if your use the power from the batteries for off-grid applications (an EV, phone, or laptop). But it's needless if your use is to power something that's already connected to the grid (e.g. your house).

  • @GabrieleNunnari
    @GabrieleNunnari Před 2 lety +31

    I have been one of the most critical persons of the previous video, and I am a believer that is important to complain as much as to gratify. I have found this video extremely complete and precise, it is a very good compendium of really interesting technologies and does not aim at presenting one as better than other ones.
    I think is a great video =)

    • @guringai
      @guringai Před 2 lety +2

      It's imprecise to say that "lithium batteries can catch fire". (Only some lithium chemistries do)

    • @GabrieleNunnari
      @GabrieleNunnari Před 2 lety

      @@guringai And lithium batteries do not use lithium chemistries?

    • @Jacob-jj8gi
      @Jacob-jj8gi Před 2 lety +3

      @@GabrieleNunnari not all lithium batteries use the same chemistry, hence the important "only some" part.

    • @vigilantcosmicpenguin8721
      @vigilantcosmicpenguin8721 Před 2 lety

      Yeah, it's good that this is a series that can really cover everything that's important.

    • @Marsoup1
      @Marsoup1 Před 2 lety +3

      This video is missing a piece on how most hydrogen is currently produced, from methane.

  • @radreaxnoh4038
    @radreaxnoh4038 Před 2 lety +7

    Hey, here's a great idea. How about nuclear? You can plug a reactor into the current grid and don't have to worry about lithium battery storage farms.

    • @RickSanchez167
      @RickSanchez167 Před 2 lety +3

      Nuclear is by far the best clean energy option, but these people wont admit it

    • @muche6321
      @muche6321 Před 2 lety

      ​@@RickSanchez167 One thing that struck me was the mentioned disadvantage of the lack of growth of the technology of pumped hydro storage. Sure, it is a 100 years old technology that might be mature and there might be no surprises in the future. Does this mean it's not worth investing in it, because you can't take sizable grants for its research?
      Uranium-fission nuclear tech might be similar. It's an established technology, so investors can't rely/hope for the research uncovering new patents for them to exploit.

    • @pepelapiu2004
      @pepelapiu2004 Před 2 lety +1

      When you realize it's not really about "saving the planet", you will understand why they reject nuclear. Thorium salt nuclear would be very promising, cheap, and safe. Yet they fight tooth and nail against it.
      If you try to build a nuclear power plant in the USA, you just won't be able to get around the tons and tons of regulations for it and you'll go belly up before you can even finish building it.

  • @clarkdoukas3477
    @clarkdoukas3477 Před rokem

    Well done and extremely insightful. Thanks!

  • @AventurasdeumEk
    @AventurasdeumEk Před 2 lety +9

    Hey Diana, I love your videos, and I'm happy to see you're posting with such a good frequency. I hope you stay productive and post these great videos.

  • @Glenn.Cooper
    @Glenn.Cooper Před 2 lety +4

    A really great overview of the options out there. And I especially like that you included information about round-trip efficiencies for most of these. Thanks!

  • @brendonesia2000
    @brendonesia2000 Před 2 lety +1

    Great work, I absolutely love the content.

  • @getbent5639
    @getbent5639 Před 2 lety +1

    Just stumbled onto your channel recently, some pretty interesting stuff!! I work at a Pump Storage plant, and one thig that you failed to mention was in order to pump the water up, you need an outside source of power. Since most Pump cycles for these plants are in the middle of the night when bulk power is cheapest, (Buy low, sell high), you are reliant on Fossil Fuel or Nuclear Plants

    • @annamyob4624
      @annamyob4624 Před 2 lety

      Oh come on. Any source of power could pump that water up. Just because your plant only uses fossil or nuclear, doesn't mean that's the only way to do it. Windmills have been doing exactly that for centuries.

    • @maikmeier5032
      @maikmeier5032 Před 2 lety

      Pump storage is fantastic, and in the past, yes, it used night time electricity. But you can equally use it during a sunny, windy day.

  • @michaelpullinger
    @michaelpullinger Před 2 lety +7

    Great video as always. From someone in the industry, I have one minor comment though - pumped storage hydro still has a lot of room for growth. There are lots of potential sites still available, and opportunities are not nearly as limited as traditional hydropower. With newer concepts such as “closed loop”, the environmental footprint is decreasing. It is only one of many options, but it’s still one of the cheapest for very long duration storage. There are several very large projects just in North America moving full steam ahead, and it will likely play a key role in energy storage for some time yet (until some of the newer concepts such as flow batteries come down further in cost).

  • @ArchaeaZero
    @ArchaeaZero Před 2 lety +8

    One of the best creators to ever bless this platform. Thank you so much for doing the things you do.

    • @sriku1000
      @sriku1000 Před 2 lety

      A good video on how to understand and use your instincts czcams.com/video/XrmyGtdmgoY/video.html

  • @colinnicholls4605
    @colinnicholls4605 Před 2 lety

    Absolutely brilliant presenter taking on an important subject is a very accessible way. Makes me feel very positive about the future

  • @mrwest5552
    @mrwest5552 Před rokem

    love love your hand writing style, and this video.

  • @johngee9018
    @johngee9018 Před 2 lety +47

    Thank you for doing this series. It started out feeling a bit like a Toyota *Hydrogen* EV Infomercial. But it progresses into an even-handed overview of EV / energy tech options. This video in particular, is a great introduction to various electricity storage options to help scale-up "the grid" for a greener, low-carbon energy economy. I hope it inspires more young people to enter the alternative energy technology field.

    • @bertilhatt
      @bertilhatt Před 2 lety +2

      There's a big part that she missed: czcams.com/video/2EA4tDYwNYo/video.html
      I suspect that wasn't an oversight, but Toyota wouldn't want someone to spell out that they are causing the end of civilisation.

    • @romanski5811
      @romanski5811 Před 2 lety

      @@bertilhatt
      Does the military contribute to climate change, and if so, is it negligible?

    • @adammarkiewicz3375
      @adammarkiewicz3375 Před 2 lety

      For me this one is the best of the three other videos from the series I've seen so far.

  • @energyeve2152
    @energyeve2152 Před 2 lety +4

    This is why I got into energy storage :D yay!
    Thanks for sharing ^_^ keep shining ☀️

  • @MatSmithLondon
    @MatSmithLondon Před 2 lety +1

    Instant subscribe! Really enjoyable and educative content. I would love to see this video without the crazy fast cuts, sped-up footage etc. I know millennial’s attention spans seem to dictate everything these days but this video has such gorgeous footage but there was no space for reflection, no quiet, no slow transitions. Too much like an advert where the brand pays for each millisecond. YT doesn’t need to be this way! An example of a channel I like is Great Scott. Compare his video footage of writing on a page to get across concepts: all very zen.

  • @miajimenez301
    @miajimenez301 Před 2 lety

    This video was very informative and explained energy storage very well

  • @bluefootedpig
    @bluefootedpig Před 2 lety +83

    Kind of sad flywheels weren't mentioned, it is also up and coming and the great thing about them is that they are like 90% recyclable.

    • @jonyemm
      @jonyemm Před 2 lety +22

      Flywheels aren't practical. They take a very large amount of energy to get to speed. Require continual energy to keep rotating at speed. Then lose their energy rather quickly. The energy they store can also be incredibly dangerous considering their mass.

    • @NBSV1
      @NBSV1 Před 2 lety +13

      Energy recovery from a flywheel is a constant drop compared to things like pumped storage that’s pretty flat energy output until the water runs out. And, one of the biggest problems with flywheels is the change in speed as power is taken from the flywheel. When it’s spinning fast it has a lot of energy, but likely is spinning to fast to really be used directly. Then as energy is removed it quickly slows down. All that means you loose a lot of efficiency with some system that balances out that energy recovery.

    • @BarbarianGod
      @BarbarianGod Před 2 lety +12

      I wouldn't call it up and coming, it's one of the oldest ways of stabilizing an electrical grid and make it resistant to temporary drops, kind of like a UPS, gravity storage is a lot more practical to store lots of energy long-term and has great efficiency

    • @kennethd.9436
      @kennethd.9436 Před 2 lety +3

      Flywheels also have a cycling limit. Good for backup.

    • @bruhmania7359
      @bruhmania7359 Před 2 lety

      flywheels are relatively dangerous and inefficient

  • @sailorgeer
    @sailorgeer Před 2 lety +37

    My company has looked at compressed air energy storage with an interesting twist : a “normal” compressed air storage tank (on land) requires a strong tank or pressure vessel to keep it in, and such tanks are heavy and expensive. An alternative is to build a thin walled tank with little inherent strength (hence cheaper) but place it in deep water, eg in the ocean hundreds of meters deep. At that depth the hydrostatic pressure of the water acts to provide all the containment pressure. The tank is open to the sea at the bottom and is initially filled with water at the same pressure as the water outside, so there is no net force on the tank walls. Compressed air is piped from the surface down into the tank, displacing the water inside which exits through the bottom. The air pressure inside is automatically equalized with the water pressure outside , again resulting in no net force on the tank walls, sort of like a diving bell. To recover the energy water is allowed back in, forcing the high pressure air back up the pipe to (you guessed it ) drive a turbine.

    • @Xeridanus
      @Xeridanus Před 2 lety +6

      I can see a few problems with this. Whatever you make the tank out of could corrode. Ocean life could grow on it clogging it. The air would eventually dissolve into the water losing capacity. I don't know how much of an issue these problems would be though.

    • @sailorgeer
      @sailorgeer Před 2 lety +13

      @@Xeridanus corrosion can be managed, steel can be protected with Cathodic protection or concrete can be designed to last 100 years in seawater. Marine growth can be managed in a variety of ways and if you in deep water there isn’t much light anyway so growth is slow. Air would eventually dissolve into water but if you are looking at short term storage like a peak shaving plant, it would be minor. If you need long term storage you could use a membrane at the air/water interface (like an inflatable balloon).

    • @Xeridanus
      @Xeridanus Před 2 lety +6

      @@sailorgeer Thanks for the answers, I'm by no means an expert so those problems were just what I came up with off the top of my head. Those solutions seem pretty reasonable to me.

    • @thedink5
      @thedink5 Před 2 lety

      czcams.com/video/9xe3BWPsBTU/video.html
      Bill Gates Slams Unreliable Wind and Solar Energy

    • @alternajarsandbladesforble8896
      @alternajarsandbladesforble8896 Před 2 lety

      unintented consequences of ocean life? - the cost and energy needed to pump each direction? what will the input / output ration be, more in than out - storage cost?

  • @projektsstenders2738
    @projektsstenders2738 Před 2 lety

    Thank You very much, for mentioning mechanical energy storage.
    Here is more available.
    For longer storage period - Iron-air batteries ("Reversible Rust" Battery)
    For shorter storage time, more dynamic use - Flywheel energy storage (FES)
    For quick access - Supercapacitor (SC)
    Complex solutions may be needed to meet all needs.

  • @Finisl
    @Finisl Před 2 lety

    Very nice introduction video. Thank you!

  • @telagraf
    @telagraf Před 2 lety +3

    I absolutely love this series of videos, thank you!

  • @yungifez
    @yungifez Před 2 lety +32

    I love that when you plug in your tv, car and Hedron collider
    Like I have 1 in my backyard 😂😂😂😂😂

    • @dannyhoberman5384
      @dannyhoberman5384 Před 2 lety +2

      wait, you dont!?

    • @kindlin
      @kindlin Před 2 lety +2

      ​@@dannyhoberman5384
      We can't all be Michio Kaku!

    • @flemlion13
      @flemlion13 Před 2 lety +1

      Did you know that the LHC has a seasonal aspect: it only runs when hydro power is available

    • @kindlin
      @kindlin Před 2 lety

      @@flemlion13
      No, I didn't know that, but I like it!

  • @abhishekgautam3913
    @abhishekgautam3913 Před rokem

    at first i did'nt wanted to watch ur videos but after watching few now I think best thing i found that u talk so calm, u r not hyper that the other science videos creaters do They talk so fast building all the hype n music also in their videos serves the same purpose

  • @americaswayout4489
    @americaswayout4489 Před 2 lety +2

    You might want to investigate "Liquid Metal Battery" as maybe, in the end, a better solution to grid storage, not so much for a single home, but for solar farms or wind. This incredible technology came out of research at MIT. As for renewable fuel, a humble plant that grows in saltwater could be planted on the coastline of 25,000 miles of desert lands and be used to both store excess CO2 in its roots, but also recreate a very clean oil in its seeds becoming a forever source of oil needed for not just energy but all the many other chemistry-related uses coming from it.

  • @shrutimoydas3756
    @shrutimoydas3756 Před 2 lety +9

    I am really loving this renewable energy series. The number of variations in the way researchers have tackled this problem is amazing!

  • @chinmayk8004
    @chinmayk8004 Před 2 lety +10

    The notebook doodling was really creative !!

  • @dougtaylor8735
    @dougtaylor8735 Před 2 lety +17

    Very good presentation. I worked in power generation design for almost 50 years. Over that time we constantly worked on projects to make our systems better for the environment. I also did some work in wind and solar plants. One thing that has always concerned me is the shear amount of area that it would take for enough renewable energy to make the required amount for our nation’s usage. If electric vehicles become mandatory it would increase substantially. The costs to produce this amount of power will be staggering and I’m not sure the population realizes what their costs for power will be. Finally, I’m not sure if anyone has quantified the actual carbon footprint for renewables “from cradle to grave”. We need reliable base loaded units to cover all the weaknesses of renewables and I agree with a lot of the comments that nuclear is the answer.

    • @georgevue8175
      @georgevue8175 Před rokem

      The renewables grave = millions of tons of toxic solar panels & lithium batteries dumped into landfills on the poor side of town. If you want to live don't drink the water.

    • @Cerberus984
      @Cerberus984 Před 10 měsíci

      Greenies: but but renewables are cheaper! Reeeee!
      Sanity: Just to cut wind curtailment (pitching blades to produce zero power) in the UK by 50% it would require 20 GWh of energy storage. Is it disingenuous to not include the energy storage costs into the equation?

  • @markmiller6402
    @markmiller6402 Před 2 lety

    Good to see the problem is being worked on, great video

  • @spongebobsquarepants7837
    @spongebobsquarepants7837 Před 2 lety +16

    This makes the future feel a little less bleak when it comes to renewable energy and the steps that are being taken to be carbon neutral.

    • @raymondmejias8071
      @raymondmejias8071 Před 2 lety

      Question: Do you really think that we have enough time to stop the process of global warming?? The planet is basically out of control..🌅🌄🌴🏝️🙏🙀🌎🌎😭

    • @spongebobsquarepants7837
      @spongebobsquarepants7837 Před 2 lety +1

      @@raymondmejias8071 I’m always hopeful that new technologies will help to slow down the destruction we have caused but I do agree that I think we are already past the tipping point and something to reverse global warming is needed to make real progress.

    • @pramod_p5
      @pramod_p5 Před 2 lety +1

      @@spongebobsquarepants7837 well if we build economies of scale, make every country richer, we can probably terraform Earth too. Until then reducing emissions can be great, but at the same time it shouldn't mean to lower down the life style of people, nuclear is the best option we have and I still don't know why many oppose it, when it's the best option we have to reduce any sort of emission, even the waste is stored and sealed off. While solar panels are being dumped rather than extracting it back, since it's more costlier to do so. Plus cheaper electrycity from nuclear.

    • @Pingwn
      @Pingwn Před 2 lety

      @@raymondmejias8071 The climate crisis is not a ticking clock, we are already experiencing it and it is going to get worse gradually as more heat is trapped by greenhouse gases and the nore of them we put in the atmospheric.
      Reducing carbon emissions and trying to reduce its amount in the atmosphere is important in order to slow down climate change and minimise its effects, so doing what we can to reach those goals is ultimately going to help us and the planet as a whole at any point and the sooner we get to those goals the more we can minimise its effects.

  • @meister-t
    @meister-t Před rokem +5

    What would be good, is mini hydrogen separators (from water) for use at home. You use solar and wind to run it during the day, and you use it to fill your fuel cell in your car, and for heating the home at night. But this will never happen, because no company gets the repeat income as is the case for a gasoline infrastructure for example. It would mostly be a one-time (or rare repeat) purchase of the unit.

  • @herrunsinn774
    @herrunsinn774 Před 2 lety

    07:56 Oh ya.. The view toward the north of the Boulder Flatirons... Sweet!

  • @CalebJMartin
    @CalebJMartin Před 2 lety +11

    One of the most fascinating things I've been picking out of these videos is the need for adaptability.
    It's human nature to try and look for the _one_ best solution. But in situations like this, it'd be best if we create a system that uses different sources of energy at different times.
    This has been a fascinating ride so far!! Looking forward to the next installation of this series 😁

    • @tyrannicpuppy
      @tyrannicpuppy Před 2 lety +3

      This. All the comments on the first two videos were complaints about her being a shill for Toyota and stating BEVs were all we'd ever need coz they were better than FCEVs for normal consumer use.
      Totally missing the point that there is not a single solution to the problems our species subjects this planet to. All of the technologies working together are the solution.

    • @solandri69
      @solandri69 Před 2 lety +2

      @@tyrannicpuppy What particularly galled me about those comments, was that if we'd applied their reasoning back in the latter half of the 20th century, then PV solar and battery tech today would be half a century behind because they were not "the best" solutions back then. And thus by their own reasoning those technologies were unworthy of attention and research back then. It indicates people who've already picked which solution they want to win, then gaming the comparisons to insure that only their choice is the winner. Not coming up with a wide range of solutions which tackle the problem, each with its advantages and drawbacks. As I like to say, if you can't come up with a decent list of advantages the tech you oppose has over the tech you support, that means you haven't done enough research and don't know enough to make an objective decision.

    • @rogerstarkey5390
      @rogerstarkey5390 Před 2 lety

      @@tyrannicpuppy
      But not missing the point that even from the figures shown in this video, Hydrogen was the least efficient storage medium.
      "25-45%". I'd LOVE to see justification for the 45% figure! But even that's poor.

    • @rogerstarkey5390
      @rogerstarkey5390 Před 2 lety

      @@solandri69
      It's not a case of "picking the solution"
      It's looking at the physics (chemistry).
      As pointed out, Hydrogen likes combining with other elements (lucky for us?)
      THAT'S the problem.
      It requires energy to liberate, and always will.
      That alone makes it expensive to obtain, AND inefficient.
      Then there's the reverse, producing electricity (unless you burn it which is polluting).
      25% just isn't "in the ballpark".
      If you can give even an idea of how it can be made "efficient" (and don't say "spare green", that boat doesn't float).... Then I'll be thrilled.
      But I bet you can't.

    • @solandri69
      @solandri69 Před 2 lety +1

      @@rogerstarkey5390 You do realize that batteries store electrical energy the exact same way - by using that electrical energy to drive a chemical reaction? All we're talking about is the efficiency of different technologies for driving different reactions of different elements as an energy storage medium, whether its lead and lead dioxide (lead acid), zinc/manganese (alkaline), nickel and hydrogen (NiMH), lithium and carbon (Li-ion), or hydrogen and oxygen. There's nothing inherent about hydrogen and oxygen which makes it less efficient - just the limits of what the technology we've developed is able to accomplish. In fact lithium-air batteries are pretty much the same thing as hydrogen, except using lithium and atmospheric oxygen as your reagents to store electrical energy. The only electrical "battery" which doesn't use chemistry is a capacitor, and those leak charge making them unsuitable for storage longer than on the order of minutes.
      As for making it more efficient, the research right now is concentrating on using sunlight to directly split apart water into hydrogen and oxygen. That eliminates the inefficiencies introduced by first converting the sunlight into electricity, then using the electricity to drive electrolysis. There was an IEEE article on it in 2020 Sep 1. Look it up.

  • @marmundo9110
    @marmundo9110 Před 2 lety +5

    Yessss! As always, I learn a lot with your videos! And they are super interesting 💙❤
    Amazing
    Plus, this is exactly what I'm studying at the moment, and it makes me super happy 😄

    • @rogerstarkey5390
      @rogerstarkey5390 Před 2 lety +1

      Do t believe the hydrogen angle. It's a con

    • @sriku1000
      @sriku1000 Před 2 lety

      A good video on how to understand and use your instincts czcams.com/video/XrmyGtdmgoY/video.html

    • @margaretarmstrong2445
      @margaretarmstrong2445 Před 2 lety

      Make sure you research all the negatives aspects of the energy sources you do research on. Most people leave that out.

  • @stephanbotes5865
    @stephanbotes5865 Před 2 lety

    Your effort in these videos are appreciated.

  • @jacobvriesema6633
    @jacobvriesema6633 Před rokem +7

    I’ve had this video on my Watch Later for a long time, and it’s interesting that you talk about flow batteries. It was recently discovered that the US spent atrocious amount of tax payer dollars into flow battery technology, and even had working models. Then they shut down the whole research facility and sent all schematics and data to China. I cannot comprehend why they would do that.

    • @soylentgreen6082
      @soylentgreen6082 Před rokem

      China often makes big offers to foreign firms so they can steal intellectual property. They are huge scammers. Wildly dishonest people.

    • @Cerberus984
      @Cerberus984 Před 10 měsíci +2

      We designed and tested molten salt nuclear reactors in the 1960s and they are now being built in China & India. They are immensly safer as the reactors thermal transfer fluid never boils VS water expanding its volume 1600 times into steam.

  • @Jaibie123
    @Jaibie123 Před 2 lety +10

    I'm loving your videos and also how neat your writing is! Such a a rare sight these days! Also love your way to relay information and your passion :)

  • @AlejandroMeri
    @AlejandroMeri Před 2 lety +57

    1:38 "A 40 hour battery will cost about 10 times as much as a 4 hour battery"
    Wow... That's like, insane to even think about!!

  • @Martin_Siegel
    @Martin_Siegel Před 2 lety

    This shows how much co-operation is needed in the future to keep us afloat. We have to pull on the same rope (and in the same direction)

  • @Dechieftian
    @Dechieftian Před 2 lety

    The multiple options for renewable energy as demonstrated by your presentation are fascinating - and increasing. And as you show it will be a combination of these emerging technologies in additon to techologies that have yet to be harvested working in tandem with what we know today will be the key to backing away from fossil fuels in a seriously meaningful way in the future. Your explanation of hydro-electric generation from lake storage where the freefall of water from an upper lake drives a turbine / generator at the lower level and in turn can be pumped back up to the upper level was very interesting. You used the term pumping up and pumping down .. I'm not sure if the action to get the water from the upper lake to the turbine is 'pumping' .. more freefall than pumping. I look forward to your future presentations. Thanks

  • @StianOke
    @StianOke Před 2 lety +38

    Thnx to physics girl and veritasium for helping me fall in love with physics. Hoping to get into physics and astronomy at UiO here in Norway, and its all thanks to these channels 🥳

    • @beactivebehappy9894
      @beactivebehappy9894 Před 2 lety +1

      Just start studying once and the rosy picture will un-paint itself, I don’t know the complete picture in Norway but I have heard that it’s very good and practical and all that fad, But the exams and cramming stuff gets pretty hard in the places that I have seen…

    • @288theabe
      @288theabe Před 2 lety +1

      I read that as “UFO in Norway….” 🤦‍♂️🤣

    • @emix1010
      @emix1010 Před 2 lety

      Go for it. And don’t mind the occasional class that might feel like a joke, there will be those you’ll wish you could have double portions :-)

  • @909fishing3
    @909fishing3 Před 2 lety +3

    What I love about studying, and building energy storage is the versatility. I've been experimenting with solar and turbines as my generators, I would say what I've storage, but 60 percent of the storage devices have been successful failures.

    • @joep9617
      @joep9617 Před 2 lety +1

      Keep goin, even a "successful failure" is a learning experiment.

  • @CarlosEscapa
    @CarlosEscapa Před 2 lety

    Thank you for the thorough research and clear explanations.
    Would you mind using metric in your videos?

  • @SteveC38
    @SteveC38 Před 2 lety

    Nicely Done!

  • @bat2293
    @bat2293 Před 2 lety +13

    Next topic.
    "Why We Should Be Talking About _Baseline_ Energy Generation": Specifically, Small Modular Nuclear Reactors (SMR's) and Liquid Flouride Thorium Reactors (LFTR's).

    • @stoweby
      @stoweby Před 2 lety

      They could be put up almost immediately but sadly they are caught up in red tape in Washington.

  • @pvic6959
    @pvic6959 Před 2 lety +5

    You are making a difference. Thank you

  • @grimftl
    @grimftl Před 2 lety

    Excellent synopsis of the pros-cons of each technology.
    A famous scifi author (Heinlein? Asimov?) said it was raining energy, but we just don't have a bucket.

  • @bhawanisinghindia2287
    @bhawanisinghindia2287 Před 2 lety +1

    Amazing work....✌️👍🙏💐🤝🌏🗺️👽👽

  • @stefanklass6763
    @stefanklass6763 Před 2 lety +11

    Ahh jeez they got you with their anti battery propaganda. The supply of lithium won’t run out Diana, it’s literally part of sea salt. The price will increase until it’s viable to get it from sea-salt, then we have virtually infinite amounts of lithium.
    Cobalt is the problem with batteries, but there already are solutions without cobalt (solid state batteries) coming.

    • @nonconsensualopinion
      @nonconsensualopinion Před 2 lety +1

      And she thinks Hydrogen will power cars. Hydrogen is not going to happen. Go research why Elon Musk calls fuel cells "fool cells".

    • @jonathanfairchild
      @jonathanfairchild Před 2 lety

      @@nonconsensualopinion It seems to me Elon’s main problem with hydrogen is that it’s pretty inefficient to make. That’s a fair point. However there are countries out there that produce so much excess electricity that they’ve taken to creating hydrogen as an energy store. They also use it for ferries and all sorts of things. If we already have a problem with creating too much energy then why not use the excess to create hydrogen. I think we’re being too tribalistic about fuel cell vs Li Ion. Li Ion has its problems, hydrogen fuel cell has its problems and both have their benefits. Elon has a history of saying things recklessly. He may come to eat his words later. I love his work with Tesla and SpaceX, but he’s not the be all end all expert. I guess my point is he has as much to gain from naysaying fuel cells as Toyota does batteries. However both could be used to great effect.

  • @HectorSanchez-ll8iw
    @HectorSanchez-ll8iw Před 2 lety +4

    I'm loving this series 🤩

  • @matthewkendall5235
    @matthewkendall5235 Před 2 lety

    Great video - one technology I have been tracking for a few years is hot batteries - Ambri's liquid metal hydride batteries - that operate on common elements operating at around 600 - 800 degrees Celcius. Very interesting that they love heavy use, aren't subject to thermal runaway and have no apparent fade over time - perfect for grid scale operation! A shipping container holds about a mega watt hour of power.

    • @gregbailey45
      @gregbailey45 Před 2 lety +1

      Not "metal hydride", just metal!

    • @matthewkendall5235
      @matthewkendall5235 Před 2 lety

      @@gregbailey45 I just took what I recall Professor Sadoway at MIT call them - reckon he should know... I will check - maybe the chemistry has moved on in 8 years - or they have simplified the language for Marketing / Investment readiness attractiveness!

    • @matthewkendall5235
      @matthewkendall5235 Před 2 lety

      @@gregbailey45 wow you are right - the word hydride has been removed from all the literature!

  • @kevindexterpattee
    @kevindexterpattee Před 2 lety

    I really enjoyed this video. Super interesting:)

  • @cfnorg5308
    @cfnorg5308 Před 2 lety +13

    I recently heard about sodium-ion batteries. They seem to have a quite decent energy density and are made from overly abundant materials. Maybe we could even use NaCl from desalination plants for these.

    • @SapioiT
      @SapioiT Před 2 lety +1

      There are also aluminium-air batteries, which are much lighter, which makes them a much better alternative for electric cars, as well as using sand for thermal storage. You should also watch the video "Dirt Simple Energy Storage | In Depth" by "Now You Know" on youtube. The technology uses hot air to heat sand or dirt kept insulated underground, and later on uses the same hot air to generate power, or to heat water for municipal water heating (where it applies). And unlike using water for heat storage, the sand can be kept much hotter than 95 degrees Celsius, at 300-400 degrees celsius, possibly more, depending on if there are advances in cheap-enough materials used for storage. And it can be easily paired with existing solar through and solar concentration towers, by simply moving heat from the thermal fluid to air and backwards. They are used in nordic European countries to heat the storage in the summer and heat their homes in the winter, so it works well as a very-long-time energy storage, too.
      Much cheaper than the the other alternatives, per unit of heat stored, and uses off-the-shelf components for the pumps and power generation systems, but needs a large area to be in (which can be underground and built above, so city plazas can work, for example, and greenhouses can be built above, to make use of the little heat which does escape, and building long corridors under streets could help keep them snow-free), which makes them a much better deal than the alternatives.

  • @halsti99
    @halsti99 Před 2 lety +43

    one thing i take slight issue with: you mentioned "just look at all those oceans" for hydrogen production. yes, but thats salt water. that produces chlorine gas in electrolysis. small problem :P

    • @samberg3864
      @samberg3864 Před 2 lety

      Yes, that's true (tbh I don't know, I'm just willing to believe you), but there's also the fact that 75% of all matter in the universe is hydrogen. It's fairly abundant.

    • @lazydave137
      @lazydave137 Před 2 lety +6

      @@samberg3864 Doesn't help us, unless you know a way to transport it back to Earth. Because while hydrogen is abundant in the universe, it is not abundant on Earth.

    • @benoithudson7235
      @benoithudson7235 Před 2 lety +1

      Desalinating and distilling the water is an order of magnitude less power demand than the electrolysis process.

    • @TechMonkey253
      @TechMonkey253 Před 2 lety +2

      @@lazydave137 it is on the earth but it is not in the form of H2 gas

    • @Dragrath1
      @Dragrath1 Před 2 lety +1

      Yeah you would probably need to do efficient desalination first say reverse osmosis followed by distillation, the problem is of course that costs energy but given that the climate doesn't look like it will be cooperating anytime soon it is probably going to be needed anyways out west in increasingly arid environments like California since unfortunately people are stubborn and unlikely to move to more sustainable locations(without natural selection being allowed to filter them out).

  • @michaelhenderson6786
    @michaelhenderson6786 Před 2 lety

    Omg I grew up in Fremont, CA! Had no idea my old hometown was one of the leaders in renewable energy

  • @Technodude255
    @Technodude255 Před 2 lety

    you go girl! just subscribed now! :D

  • @GlenHunt
    @GlenHunt Před 2 lety +47

    I'd love to see a sprawling city with decentralized pumped hydro: pretty waterfalls everywhere! Probably rainbows, too.

    • @U_Geek
      @U_Geek Před 2 lety +2

      Imagine those with plants, that would look awasome

    • @__mads__
      @__mads__ Před 2 lety +3

      Full-on DOUBLE rainbows!!! 🌈🌈🦄

    • @jmr
      @jmr Před 2 lety

      You have that in the water tower of every tall building. Just install the water powered smart speaker in your shower to make use of it.

    • @TheRoadfarmer
      @TheRoadfarmer Před 2 lety +1

      I'd like to see a city full of solar panels and wind turbines to generate its own electricity instead of covering valuable food/crop producing land nearby and then grid lining that electricity to the city as is done now. Renewable energy has to find a way to stop destroying our extremely important food producing farmland

    • @todddammit4628
      @todddammit4628 Před 2 lety +6

      @@TheRoadfarmer Actually renewables can coexist not just along side agriculture, but literally on the same turf. There are already people installing solar on a raised canopy that sits above a crop field. And this actually benefits a lot of crops by limiting their exposure to the sun. Wind turbines take up virtually no farm space and are actually being leased on farm land so farmers get paid just for having them. Large solar farms are usually installed in high sunlight areas where you can't grow crops anyway. And also monoculture ag is actually a CONTRIBUTOR to climate change and needs to radically transform. We actually need to give back a LOT of the farmland we currently have to nature.

  • @MrRobbyvent
    @MrRobbyvent Před 2 lety +5

    Thank You for let me know that energy storage by gravity exists. Must be great to work in the energy storage industry, looks like it has a great demand for the future!

    • @devforfun5618
      @devforfun5618 Před 2 lety +2

      that was the most obivous enviromental friendly technology i thought about, lift some weight when you have sun, drop it when you dont, it was used in old clocks, you just used your hand to raise some weight
      in Brazil most energy is taken from water, but water evaporates and relies on rain, if you could use something like sand for example that will remain forever were you leave it, and use solar panels to lift the sand during the day you could storage that energy source for a long time

  • @TheWhitetailrancher
    @TheWhitetailrancher Před rokem +1

    Most impressive thing about this entire video is your penmanship in your little tablet!

  • @FlameofDemocracy
    @FlameofDemocracy Před 3 měsíci

    Excellent presentation.

  • @Conceptcreator
    @Conceptcreator Před 2 lety +51

    Ok this is a really nice video! Need to check the rest of these series! Well explained!!

    • @Sivah_Akash
      @Sivah_Akash Před 2 lety +9

      Just be aware that Hydrogen currently is mostly made from fossil fuels. :)

    • @adityasahasranshu7503
      @adityasahasranshu7503 Před 2 lety +9

      It's more like a advertisement for Toyota, with cherry-picked data.

    • @Sivah_Akash
      @Sivah_Akash Před 2 lety

      @@adityasahasranshu7503 , what exactly are you referring to when you say cherry picked data?

    • @adityasahasranshu7503
      @adityasahasranshu7503 Před 2 lety +6

      @@Sivah_Akash i've already written a while 5 point breakdown of how she was just doing advertisement for Toyota, and trying to make hydrogen look good, in the last video. But here u go, its the copy and paste of the whole 5 point breakdown from last video, so it's addressed to her, so when i say "you" I'm not indicating towards u-
      The amount of bias in that video was not expected, from such an well respected scientific youtube personality.
      1. Range - here you stated real world range for EVs but stated EPA estimated range for FCVs. Then considering EPA range Tesla model S had 405 miles of range.
      2. refueling - U pulled the trick of I'm just going to focus on California, restricting sample size does help to create a narrative. 50% in California doesn't have access to in house charging, but those BEVs owners over 5000 supercharging options, but the other 50% can charge at home and also have the option for supercharging. But, now let's take a bigger sample of the whole USA, there are total 48 hydrogen fuelling station in USA and out of those 48 (afdc.energy.gov/stations/states), 47 are in California vs 5000 fast chargers and if public chargers are included then it's over 42000, in case of FCVs each and every customer in the United States has only 48 stations.
      3. Efficiency - Batteries are already at 350wh/kg mark, company like CATL, LG, Tesla 4680 are steady making batteries that are over than 350wh/kg (10-15% expensive than LFP) mark.
      4. Yeah i want a fuel cells to charge my phone and then get refilled at the 47 stations to charge again. Really? Why don't we just make chargers that take gasoline? Full it up and there you go. Every promising FCV & BEV semi-truck are under development. But talking about company like Nikola? Really? The biggest fraud. That's your credibility, for god's sake. Now considering Tesla semi, Yes the truck has been delayed but main reason battery constraints not chemistry but production. Tesla semi will've 500 miles of range at max load of 36287kg (80000lbs). So, saying BEVs going to be bad at load carrying vehicles is misleading. Now talking about speed, there is not a single FCV on road today that can compete with a BEV of 2012 model S, a 9 year old car is faster, quicker than the best of FCVs of 2021. So no there is no advantage for FCVs in speed and acceleration rather they'll be slow and will lag behind in both of those key aspects.
      5. Infrastructure - Fuel cell infrastructure is one of most ineffective, inefficient, high maintaining infrastructure ever for public transportation. Its hard to scale, maintain, needs extensive amount of energy to keep it running, cost of building a Hydrogen station is around $2million and for a supercharging network is at most around $200k. Safety -It doesn't matter how much precautions you take, in real world accidents do happen, and if at some point in future one station catches fire then the amount of devastation hydrogen can cause is underestimated, but the same can be said about lithium-ion battery storage, and the scale of destruction in a Li-ion is localised, as seen in Australia, fire in one module during construction was localised to that module only while having 100s of other modules in close proximity, and way more controllable than a hydrogen station catching fire. And one thing we are not taking into account is Solid state batteries, which are higher in energy density, doesn't catch fire when punctured, but hydrogen no matter what, will have the vulnerability of catching fire and exploding.

    • @ankitrai96
      @ankitrai96 Před 2 lety +1

      @@adityasahasranshu7503 true.

  • @kedaruss
    @kedaruss Před 2 lety +19

    So li-ion can catch fire but no word about it in the case of hydrogen? If just hydrogen refueling station damaged tens of houses around it what would happen with larger-scale storage?

    • @kedaruss
      @kedaruss Před 2 lety

      @TheGoat Last year we had about 300 hydrogen refueling stations in the EU and the US combined. In 2 years 2 of them exploded. That's 0,75% chance of explosion per year per station. I don't know if I can call it "well sorted in terms of safety". Hydrogen isn't as easy to handle as other flammable gases.
      If a big storage facility goes boom it will be a slightly different outcome.

    • @williammeek4078
      @williammeek4078 Před 2 lety +1

      @TheGoat given the number of gas explosions, I wouldn’t call it “well sorted”

    • @williammeek4078
      @williammeek4078 Před 2 lety +1

      @TheGoat The problem is that with humans involved, regulation isn’t enough. And as to ICEVs. We are moving to a safer tech (your other example that is 10x less likely to catch fire) as it becomes available so that example doesn’t exactly help your case

    • @williammeek4078
      @williammeek4078 Před 2 lety

      @TheGoat The flaw with this argument is that we are getting rid gas stations along with gas cars.

    • @kedaruss
      @kedaruss Před 2 lety

      @TheGoat You are correct about the sample size but it shows that storing hydrogen isn't as easy as with other, larger molecules. Even when well regulated.
      And yes - if someone releases a new car and a bunch of them explodes on contact with water it is a reason to be concerned (Fisker Karma) but even in the beginning of the production Tesla showed that their cars were safe.

  • @livineazy24
    @livineazy24 Před 2 lety

    Not sure if I missed it in the video, but what was the name of the Heat Transfer Fluid? Did they tell you?

  • @greggrant4614
    @greggrant4614 Před 2 lety

    Excellent topic, depth and breath of summarization. Thank you for this. You might try to give more info on cost-effectiveness of the various technologies for various usage cases, such as short-term peaks vs. longer-term storage for exceptional seasonal peaks. For example, converting solar based electricity to hydrogen via electrolysis at 70% efficiency and then back to electricity with a fuel cell at 50% efficiency is a combined round-trip efficiency of only 35% - not so good, particularly if the cost of the electrolyzing equipment, hydrogen storage and fuel cell is high. Fuel cells also have a short-life problem for the membrane, as well as high maintenance / short-life issues for other components.

    • @maikmeier5032
      @maikmeier5032 Před 2 lety

      But the video series is partially sponsored by Toyota.

  • @brunoscs
    @brunoscs Před 2 lety +25

    I think you should talk more about nuclear power.

    • @stephanbergmann4519
      @stephanbergmann4519 Před 2 lety +1

      Nah, this has been discussed at length: Nuclear power (in its current form) is too expensive, takes too long to build and doesn‘t work well in tandem with renewable energy to be worth the trouble.
      Future nuclear tech may change the discussion, but we can‘t wait for this to happen.

    • @thomasmaier7053
      @thomasmaier7053 Před 2 lety

      Nah, too expensive.

    • @margaretarmstrong2445
      @margaretarmstrong2445 Před 2 lety

      @@stephanbergmann4519 Nuclear power plants last up to four times longer than solar and wind power plants, have far less toxic and physical waste, and the advantage of a tiny footprint of land.

    • @bananaclub69
      @bananaclub69 Před rokem

      no

    • @davepetro5676
      @davepetro5676 Před rokem

      Biden is against Nuclear power. When Biden was Vice President he was in NH. Bragging about shutting down Nuclear power plants. And lady said we have I in our backyard and Biden said he was working on shutting it down that was when he was Vice President

  • @MiscMitz
    @MiscMitz Před 2 lety +96

    The tech is so interesting and we are leaping forward. Thank you

    • @rodimusprimex5232
      @rodimusprimex5232 Před 2 lety +7

      unfortunately, we aren't. In most cases, we are picking up concepts and projects that were set aside decades ago. So, in a lot of ways we are actually looking back. That's the unfortunate park. We are fortunate that there is finally momentum and funding!!

    • @knottyboy6086
      @knottyboy6086 Před 2 lety +1

      Natural gas

    • @tellmey1
      @tellmey1 Před 2 lety +3

      it's a great leap forward

    • @ramanmono
      @ramanmono Před 2 lety +2

      Yeah, pumping water up a mountain and making it fall. What technological leaps.

    • @ExistenceUniversity
      @ExistenceUniversity Před 2 lety +1

      "Great leap forward" Ok Mao

  • @izzyp3243
    @izzyp3243 Před 2 lety

    This was so informational interesting and inspiring tbh

  • @WaningGibbous
    @WaningGibbous Před 2 lety

    Thank u for this :)

  • @Maelwys
    @Maelwys Před 2 lety +10

    When both Dianna and Tom Scott make a video on the same subject in the same week, you know it must be important!

    • @dwalinozzo
      @dwalinozzo Před 2 lety +3

      energy storage is a problem created, not a problem that we have to challenge with.
      if we use 50% nuclear and 50% renewables we don't need energy storage. if we want to go to 100% renewables we have to spend tens of trillions on energy storage.

  • @SubprojectChannel
    @SubprojectChannel Před 2 lety +5

    Awesome video!
    I'm really looking forward to what amazing things the future has to offer

  • @anushkamakhija7321
    @anushkamakhija7321 Před 2 lety

    For the TPV technology you introduce here, would the Carbon blocks used by Antora be a use for Carbon captured through DAC?

  • @peterdobos1606
    @peterdobos1606 Před 2 lety +2

    The first battery technology ever was thermal storage, and it's been in use for 10s of 1000s of years.
    Rocks around a campfire.

    • @kjamesjr
      @kjamesjr Před 2 lety

      So you mean burning wood.

    • @peterdobos1606
      @peterdobos1606 Před 2 lety

      @@kjamesjr no. the fire was the charging system to put heat into the rocks.

    • @kjamesjr
      @kjamesjr Před 2 lety

      @@peterdobos1606 But the solar energy was already in the wood.

    • @peterdobos1606
      @peterdobos1606 Před 2 lety

      @@kjamesjr oh geez. My comment was about energy storage. Which is what the video is all about. Obviously almost all energy on Erth comes from the Sun.

  • @MastroGippo
    @MastroGippo Před 2 lety +25

    "let's talk about lithium batteries"
    ... *shows a swollen PB-GEL battery*

    • @rogerstarkey5390
      @rogerstarkey5390 Před 2 lety +11

      Yes
      Biased much? (The video)

    • @markraumer2336
      @markraumer2336 Před 2 lety

      I presume a damaged lithium battery would have exploded or burnt down?

    • @RandyTWester
      @RandyTWester Před 2 lety +2

      Because nothing left of the lithium battery but a crater?

    • @MastroGippo
      @MastroGippo Před 2 lety

      Nope. Just google images of swollen li batteries

    • @bob9802
      @bob9802 Před 2 lety

      @@rogerstarkey5390 I believe it was a mistake.
      There is a report talking all about how lithium batteries need to be spaced further part when they are placed in giant containerized systems. On the cover, a photo of the SnoPUD Vanadium battery, placed closely together.
      If she were really biased against lithium, she would have mentioned that the Victoria Tesla Big Battery she mentioned had already caught on fire once, and took 3 days to put out.
      Lithium batteries are far safer than any gasoline, CNG, propane, or similar source, but it is far from the safest battery.

  • @michealoflaherty1265
    @michealoflaherty1265 Před 2 lety +73

    Love that your going large on energy Diana.

    • @Bleeto
      @Bleeto Před 2 lety +3

      what is that even supposed to mean?

    • @michealoflaherty1265
      @michealoflaherty1265 Před 2 lety +1

      @@Bleeto
      "I like that you are going into energy in a big way, Dianna." (hope this helps)

    • @Bleeto
      @Bleeto Před 2 lety +1

      @@michealoflaherty1265 thanks

  • @MikeSuding-
    @MikeSuding- Před 2 lety +1

    I liked this video. It got me thinking what are the most important criteria to rate the different methods. So far I think...
    Cost per kWh (incl. operation over time)
    Scalability (small or big)
    Safety
    Geographic dependency
    Raw materials (lots of supply)
    Efficiency (round trip of course)
    What others seem important?
    Also, with lots of criteria, it seems like a good use of a "spider graph"

  • @rudolfsykora3505
    @rudolfsykora3505 Před 2 lety

    Solved by gravity battery build in Switzerland, operating just fine. 3 new are about to be build 🙌