Video není dostupné.
Omlouváme se.

Shooting an electron beam through air

Sdílet
Vložit
  • čas přidán 2. 08. 2024
  • A special 100nm thick window allows 25 KeV electrons to pass from a vacuum tube to the atmosphere where they hit a fluorescent screen -- a CRT in air!
    Shielded GoPro goes through a powerful electron beam: • Radiation shielded GoP...
    More powerful amateur electron beam in air: fusor.net/board/viewtopic.php...
    Deep technical resource on dielectric charging via electron bombardment:
    apps.dtic.mil/dtic/tr/fulltex...
    Tons of information on industrial e-beam processing: iiaglobal.com/uploads/document...
    KF25 to glass tube quick adapter: www.idealvac.com/SWIFT-SEAL-K...
    100nm silicon nitride windows: www.tedpella.com/grids_html/s...
    More windows: www.temwindows.com/category_s/...
    Tritium light sources (eBay removed most): usa.banggood.com/search/triti...
    E-beam crosslinking: ebeamservices.com/polymer-cro...
    KF25 cross $18 on Amazon: www.amazon.com/gp/product/B07...
    Lightbulb sockets: www.amazon.com/gp/product/B07...
    Hysol 1C: www.amazon.com/Loctite-HL1373...
    Applied Science on Patreon: / appliedscience

Komentáře • 1,4K

  • @derek-perry
    @derek-perry Před 3 lety +402

    We're gonna need a good vacuum, so conveniently, I had this turbomolecular pump laying around...

    • @kanetw_
      @kanetw_ Před 3 lety +23

      I've had a turbomolecular pump lying around for 2 years now from when I wanted to build a PVD chamber. But making the actual chamber was too much of a pain so the project got dustbinned.

    • @coryarmbrecht
      @coryarmbrecht Před 3 lety +5

      Was looking for this comment. haha

    • @Gameboygenius
      @Gameboygenius Před 3 lety +26

      Doesn't everyone have a turbo lying around from their DIY electron microscope project?

    • @coffeecuppepsi
      @coffeecuppepsi Před 3 lety +40

      One of my favourite lines was "i built an electron microscope from things i had lying around in the garage"
      Me: old timber and a broken kettle?

    • @fullwaverecked
      @fullwaverecked Před 3 lety +9

      Sadly most of us are living in a vacuum...

  • @thethoughtemporium
    @thethoughtemporium Před 3 lety +708

    OMG you built a Lenard tube! I've always wanted to do this. Amazing as always, so glad to finally see a good video about this. If you do ever want to mess with higher voltages, look at a linear potential drop accelerator. Can be powered by a standard cheapo van-de-graff generator (they're also called van de graff accelerators for that reason) and you've already got all the stuff to build it basically. I suspect you could get the lichenberg figures working that way. Also on the list of things I've always wanted to build

    • @andrewpast1959
      @andrewpast1959 Před 3 lety +77

      New idea, a yeast that emits electrons.

    • @rafaelskt4ever
      @rafaelskt4ever Před 3 lety +25

      Two of my favorite channels!

    • @BloodAsp
      @BloodAsp Před 3 lety +9

      @@andrewpast1959 Electric bacteria is what you may be thinking of.

    • @aerogfs
      @aerogfs Před 3 lety +2

      @@andrewpast1959 Might as well just plug into an electric eel

    • @A3Kr0n
      @A3Kr0n Před 3 lety +15

      My "every Amateur Scientist article ever" CD from Scientific American has that accelerator project
      It's called:
      How to Build a Machine to Produce Low-Energy Protons and Deuterons
      by C. L. Stong
      August, 1971

  • @MushookieMan
    @MushookieMan Před 3 lety +306

    10:34 xray hit the camera sensor

    • @AppliedScience
      @AppliedScience  Před 3 lety +109

      Oh wow, I didn't notice this. You might be right, as I've never seen a video artifact like this from my camera in "normal" circumstances.

    • @Fj128
      @Fj128 Před 3 lety +46

      Screenshot for anyone curious: i.imgur.com/nyIHjFN.png
      That's a weird artifact!

    • @RonLaws
      @RonLaws Před 3 lety +58

      @@Fj128 if true; it looks like it managed to mangle a few of the scan lines, possibly hit the decoding circuitry off to the side of the sensor array rather than hitting a sensor itself causing it to corrupt an entire row (or more) of pixels before stabilising again. that's my guess anyway

    • @AlexanderBukh
      @AlexanderBukh Před 3 lety +7

      @@RonLaws yes i thought the same before seeing ur comment

    • @clonkex
      @clonkex Před 3 lety +2

      I also noticed this and immediately thought the xray had messed up some part of the camera temporarily.

  • @fgbhrl4907
    @fgbhrl4907 Před 3 lety +157

    Things to put in the beam:
    CMOS / CCD sensor.
    Crookes radiometer
    Various (decapped?) ICs / semiconductors, see how their characteristics change
    voltage references / bandgaps
    Opamps
    Diodes
    transistors / mosfets

    • @danicarbonell4314
      @danicarbonell4314 Před 3 lety +20

      10:35 - CMOS sensor says hi!

    • @ANTALIFE
      @ANTALIFE Před 3 lety +1

      Oh man, yes please! Would be super keen to see what effect this has on common electrical components

    • @adamkendall997
      @adamkendall997 Před 3 lety +3

      Don't forget about ants. That would be awesome to see.

    • @among-us-99999
      @among-us-99999 Před 3 lety +3

      EPROM Chip?

    • @adamrak7560
      @adamrak7560 Před 3 lety +2

      flash would be interesting too

  • @sealpiercing8476
    @sealpiercing8476 Před 3 lety +191

    I hear someone who now knows the heart-stopping how-expensive-was-the-mistake-I-just-made sound of a turbomolecular pump yowling as it crashes to a halt.

    • @lazyh-online4839
      @lazyh-online4839 Před 3 lety +30

      Haha, that person must be lucky, I've seen the carnage of over 100k rpm crashing to a halt and transferring all the kinetic energy to the pump housing causing it to wrench itself loose from the vacuum chamber and fling itself across the room, smashing up a tool chest along the way. The chamber got a little messed up as well, both from the pump ripping itself from the flange and from the electron beam suddenly exposed to atmospheric pressure, the filament exploded and melted chunks of (I assume) oxidised tungsten to the anode and cup.

    • @kanetw_
      @kanetw_ Před 3 lety +6

      Yeah, when I was reading my pump specs it requires the pump mount to withstand 600 Nm of torque. And it only goes to 60k RPM.

    • @sealpiercing8476
      @sealpiercing8476 Před 3 lety +8

      @@lazyh-online4839 So I've only ever worked with little stuff pumped by a hipace 30 turbopump. Twice in my career I've suddenly exposed one of those to atmosphere through a wide open valve while it was going full speed. It was heart-stopping (because my hindbrain apparently knows the significance of that sound), but the pump was okay in both cases. Maybe the compression ratio was slightly worse afterward, but still good enough to hit 1e-9 mbar with just the two-stage diaphragm pump that comes with the hicube package was still doable. Those are tough little turbopumps.
      Now, accidental venting is a (relatively) gradual stop. I assume that if you get a good chunk of debris in there to really jam it, even the little pumps can rip themselves straight off the flange.

    • @sealpiercing8476
      @sealpiercing8476 Před 3 lety

      @@kanetw_ The mass of the rotor is important. Is that a big pump or a little pump?

    • @kanetw_
      @kanetw_ Před 3 lety

      @@sealpiercing8476 HiPace 80. About 3 kilos?

  • @ChristianIversenX
    @ChristianIversenX Před 3 lety +92

    "So if you have time in the Large Hadron Collider.." 😂😂

    • @johndododoe1411
      @johndododoe1411 Před 3 lety +3

      on it, as in riding the drivers seat in the topside control room, not inside getting irradiated.

    • @NicolaiSyvertsen
      @NicolaiSyvertsen Před 3 lety +3

      Yeah. I'll just call for an appointment.

    • @drtidrow
      @drtidrow Před měsícem +1

      Well, that's actually hurling protons around. What you really want is time on SLAC (Stanford Linear Accelerator Center), which is a two-mile long electron gun.

  • @HuygensOptics
    @HuygensOptics Před 3 lety +70

    Loved it Ben. Next stop: demonstrate the wave character of the electron by placing a dual slit in the beam and a phosphorus screen behind it. Though, I must admit this experiment is a way more difficult than it sounds...

    • @johndododoe1411
      @johndododoe1411 Před 3 lety +1

      Classic

    • @trashdigger2119
      @trashdigger2119 Před 3 lety +2

      yeah its difficult becaus you need very narrow slids very close together right?

    • @TheRainHarvester
      @TheRainHarvester Před 3 lety +1

      What is the wavelength? Yesterday, we made a microscope slide covered in candle soot and two needles taped together to create the slits. Worked. But that was a red laser (620nm?).

    • @whitcwa
      @whitcwa Před 3 lety +1

      Would be better done inside a vacuum chamber. Maybe using the electron microscope?

    • @HuygensOptics
      @HuygensOptics Před 3 lety +10

      @@TheRainHarvester wavelength is indeed the problem. The wavelength is equal to the Planck constant divided by the particle momentum. With an electron, the wavelength will quickly be in the Angstrom range or lower. So using two needle scratches is not going to do the trick I'm afraid.

  • @timg2727
    @timg2727 Před 3 lety +77

    I really appreciate how this channel is filmed and edited. It's high quality without being gimmicky and slick like so many other CZcams channels, which makes it easier to focus on the content and not the presentation (the lack of background music is especially refreshing).

    • @BM-jy6cb
      @BM-jy6cb Před rokem +1

      Amen to that! Pointless background music drives me up the wall.

    • @ErikBongers
      @ErikBongers Před rokem +1

      Yeah, please never do the "...coming up right now!" or "Let's get started!" intros. Since they are always followed by a title sequence, they're per definition a lie anyway.

    • @rorypenstock1763
      @rorypenstock1763 Před rokem

      Hear, hear!

  • @caseymorean83
    @caseymorean83 Před 3 lety +130

    I’m a user of Thomas Jefferson National Accelerator Facility, which has a 12GeV electron beam. Each aluminum ‘window’ is several millimeters thick to hold back the atmosphere, and so the beam traverses several centimeters of aluminum without losing much energy at all.

    • @BlankBrain
      @BlankBrain Před 3 lety +10

      As electrons approach relativistic speeds, doesn't the thickness of the window decrease? I'd have to get my books out, but it seems like I remember something like that. Or maybe I'm full of it.

    • @SolarWebsite
      @SolarWebsite Před 3 lety +23

      At 12GeV, I believe it! Will you take viewer's suggestions to put stuff in the beam as well? ;-)

    • @RelianceIndustriesLtd
      @RelianceIndustriesLtd Před 3 lety +1

      so there is no actual window? the beam just leaks out?

    • @tymekuzarczyk6021
      @tymekuzarczyk6021 Před 3 lety +11

      @@RelianceIndustriesLtd depends on your definition of window

    • @123mrabcde
      @123mrabcde Před 3 lety +5

      For those who are interested the Bethe formula
      describes the energy loss of a charged particle passing through matter.

  • @Idothewrenches
    @Idothewrenches Před 3 lety +97

    A hot dog would make a great finger analog.

    • @Douglas.Kennedy
      @Douglas.Kennedy Před 3 lety +13

      we've got a winner here. chuck up the hot dog in the lathe and use the cross feed to evenly blast the entire surface with electrons. Or channel the ghost of Grant Thompson and cross-link some gummy bears.

    • @jetison333
      @jetison333 Před 3 lety +3

      Im not really informed about it here, but my assuption would be that there wouldn't be any visible damage, but more like it would cause cancer/irradiate and kill all the cells.

    • @djmips
      @djmips Před 3 lety +16

      @@Douglas.KennedyFTFY we've got a wiener here.

    • @Ninjaznexx
      @Ninjaznexx Před 3 lety

      Or a finger!

    • @fischX
      @fischX Před 3 lety

      So he should put his wiener there?

  • @nw7696
    @nw7696 Před 3 lety +31

    Exposure to an area of bread to determine how well it inhibits mold growth.

    • @AppliedScience
      @AppliedScience  Před 3 lety +18

      Fantastic idea!

    • @Richardincancale
      @Richardincancale Před 3 lety +4

      The bread will be toast :-)

    • @wbeaty
      @wbeaty Před 3 lety +2

      @@AppliedScience Anyone have samples of Chernobyl mold? The stuff that photosynthesizes gammas? Maybe it will grow, under e-beam. (Like the infamous Strain 121, thermophiles from the Black Smokers, use an autoclave for proper growth environment.) Hey, how can melanin stop gammas, when lead does not? I've heard rumors of using melanin for radiation shielding.

  • @among-us-99999
    @among-us-99999 Před 3 lety +28

    an EPROM chip could be interesting, while constantly reading it to see if the bits just get erased (like with UV) or get wildly flipped around because of the electrons

  • @Spirit532
    @Spirit532 Před 3 lety +34

    Stick something under it and put your XRF detector next to it!
    Since you're firing electrons at something, you can get characteristic x-ray peaks out of it, just like you would with any regular x-ray tube.
    This is just how SEMs do it!

    • @davidsiriani9586
      @davidsiriani9586 Před 3 lety

      That's a good idea!

    • @Spirit532
      @Spirit532 Před 3 lety +4

      @Matthew Morycinski You're not going to get anywhere near the beam current when it goes through the atmosphere, and definitely nowhere near the Gaussian profile. I wouldn't expect the actual electron "current" to be more than 10% of the beam current. Even still, at 30keV 200uA you're not likely to do any significant damage if you run it for a minute or two while standing a meter or more away.

    • @pavelperina7629
      @pavelperina7629 Před 3 lety

      @@Spirit532 I guess dangerous is not the beam itself, but radiation from electrons hitting whole area of aluminum plate. Characteristic x-ray K-alpha emmision line of Aluminum is 1.48keV (~0.85nm) and I'm not sure how much of it can be stopped by thin glass tube and air. EDIT: I forgot about bremsstrahlung that has wide spectrum.

    • @Spirit532
      @Spirit532 Před 3 lety

      @@pavelperina7629 1.48keV would be stopped by a few mm of air. Braking radiation is more dangerous, but still, as said above, the amount would be negligible.

    • @pavelperina7629
      @pavelperina7629 Před 3 lety

      @@Spirit532 I'm not sure where to find information about xray opacity for various energies and materials, but someone told me that using aluminum and steel for shielding makes huge difference and that's why all SEM parts are from steel or iron and beam energy is limited to 30keV

  • @WizardTim
    @WizardTim Před 3 lety +131

    Would love to see you expose a micro SD card to the beam (or some other array type device), I wonder if you could attempt to make a cool but completely useless image sensor out of it (although I suspect the wear leveling to be a problem on modern ones).
    Connecting a metal plate to an analog ammeter and to ground and moving it around in the beam would also be a really simple but cool demo.
    I also wonder if considering this thing is putting out a good watt or two of radiation (might have to crank it up a little for this work) I wonder if you could put the aerogel (or some other low thermal conductivity material) into the beam and then cross section it while filming with a thermal camera, I would expect to see an interesting pattern as the beam is absorbed by the material heating it.
    I also see a lot of people are suggesting a cloud chamber, I would love to see that as I don't really know what kind of trails this thing would make.

    • @user-rc4zk8ge1g
      @user-rc4zk8ge1g Před 3 lety +6

      Just a NAND memory chip would be a better "ghetto image sensor" - assuming the electrons can make it through the packaging. MicroSDs would have the same exact issue though.

    • @JesseCombsTwiZtedCheese
      @JesseCombsTwiZtedCheese Před 3 lety +5

      @@user-rc4zk8ge1g nobody in the ghetto is making imaging sensors

    • @Ma_X64
      @Ma_X64 Před 3 lety

      Very interesting experiment is when the chunk of plexiglass (acrilyc glass) exposed to electrons with energy about 5MeV. Electrons stucks in plastic and then when you pin it through with some grounded sharp thing, electrons are drain through this thing to ground and you get a little lightning inside that draws a 3D Lichtenberg figures.
      UPD: Oh! There is in video about it. )

    • @Ma_X64
      @Ma_X64 Před 3 lety +3

      ​@@JesseCombsTwiZtedCheese that depends of what the ghetto!)))

    • @noahpaulette1490
      @noahpaulette1490 Před 3 lety

      @@user-rc4zk8ge1g you can sand the packaging and the die itself if that wold help. It's called die lapping in extreme overclocking. They sand it thinner and mainly flatter for better thermal transfer.

  • @jonatanrrz
    @jonatanrrz Před 3 lety

    I’ve been watching your videos for a few years and I’m always waiting for the next one. Thank you for sharing this with us.

  • @Casowsky
    @Casowsky Před 3 lety +5

    As always, some of the absolute coolest stuff and best production on youtube. Thanks so much for the effort.

  • @Amy_A.
    @Amy_A. Před 3 lety +17

    I love how you show your process and explain why you do it that way. One day I hope to start a kind of lab of my own, and I love seeing all the different ways people use tools for various purposes. Thanks for the good content!

  • @JMMC1005
    @JMMC1005 Před 3 lety +47

    It'd be interesting to see its effect on a living thing - maybe part of a plant, or an agar plate with bacteria? I'm assuming it'd kill / sterilise the affected region very quickly.

    • @AppliedScience
      @AppliedScience  Před 3 lety +49

      That's a good idea. Since I mentioned it's used to sterilize equipment, I should show it working!

    • @anullhandle
      @anullhandle Před 3 lety +9

      @@AppliedScience maybe draw your logo with the beem in the petri dish lol. Btw unless I misheard you the e beam x links the extruded heatshrink tubing before it's expanded. That's what gives it a way to relax to its original size when you reheat it in use. You can over irradiate it in processing and make it brittle.

  • @Watchyn_Yarwood
    @Watchyn_Yarwood Před 3 lety

    I enjoy and appreciate the way in which you explain processes in such a simplistic manner! Thank you!

  • @muxallopeniot9194
    @muxallopeniot9194 Před 3 lety

    Ben this is just an amazing video. For you to take the time to do all this stuff is just awesome.

  • @SafetyLucas
    @SafetyLucas Před 3 lety +57

    6:49 "Is this thing producing x-rays?" "Yeah you betcha!" lol you're great!

    • @great__success
      @great__success Před 3 lety +1

      I wonder how long will the video last before youtube takes it down

    • @jb5631
      @jb5631 Před 3 lety

      @@great__success no use in wondering about something that is not going to happen

    • @repairtech9320
      @repairtech9320 Před 3 lety

      Last time he said X-Rays on YT, the neighbour sent the police over.

    • @joshuacoppersmith
      @joshuacoppersmith Před 3 lety

      I asked, for sure. When I saw the thumbnail I remembered one of my brilliant electronics expert uncles would say that you can play with the fly back voltages from a b&w TV, but by color the 20,000 volts puts you in the danger zone enough to matter.

  • @MrCarlsonsLab
    @MrCarlsonsLab Před 3 lety +339

    Great stuff Ben! Any thoughts on adding beam forming plates or (A focus electrode) inside the device to focus the beam?

    • @injesusname3732
      @injesusname3732 Před 3 lety +12

      no

    • @coffeecuppepsi
      @coffeecuppepsi Před 3 lety +26

      Mr Carlson ! Love your stuff too

    • @AppliedScience
      @AppliedScience  Před 3 lety +129

      Thanks! Yes, good point. I've seen a lot of X-ray tubes just have a cup shaped reflector around the filament to help shape the beam. The cup is usually just electrically connected to the filament, so no special drive voltage needed. I also tried to find out why X-ray tubes never seem to have enhanced (eg barium) emitters like all common vacuum tubes. As near as I can tell, the problem is the high voltage electron impact on the metal target will create ions that are accelerated back toward the cathode, and would eventually destroy it. This is partially (or completely?) why early CRTs had ion traps in their electron guns? Maybe you know?

    • @Spirit532
      @Spirit532 Před 3 lety +21

      ​@@AppliedScience I haven't seen enhanced emitters in sealed tubes, aside from thoriated tungsten(embedded, not coated), but actively pumped lab tubes(micro/nanofocus) often have coated cathodes, which are replaceable.
      The cup is still the same Wehnelt that is in your SEM and such. Serves the same function, to pinch the beam.

    • @Sharklops
      @Sharklops Před 3 lety +7

      this is awesome.. while watching the video I was thinking how much Mr Carlson would probably like it

  • @ondography
    @ondography Před 3 lety

    What a fantastic video! I am blown away at how effective these things are. Thanks for another video that widened my perspective

  •  Před 3 lety +28

    I always marvel at your videos, but the comment section.. it's amazing how great community you've gathered on a platform none other than youtube. It's a pleasure to read these comments with so many insights and good questions. Your channel is like a microverse of curiosity, such a lovely place.

    • @KingMoronProductions
      @KingMoronProductions Před 2 lety +1

      Hehe, butts.
      But no in all seriousness I absolutely agree, wonderful channel and a wonderful mature insightful community! :-)

  • @timothymiller6426
    @timothymiller6426 Před 3 lety +27

    This is one of the coolest things I've seen in a long time.

    • @ih8tusernam3s
      @ih8tusernam3s Před 3 lety +3

      I swear when Ben walks into a room the collective IQ doubles.

    • @LarryAllenTonar
      @LarryAllenTonar Před 4 měsíci

      Impossible unless the room started with jjust people whose IQ's added up equaled Ben's

  • @lusmiaka
    @lusmiaka Před 3 lety +14

    Try the Double-slit experiment

  • @StevenCasteelYT
    @StevenCasteelYT Před 3 lety

    Wow, you made these advanced topics really understandable.

  • @GG-od2tr
    @GG-od2tr Před 2 lety

    Thank you so much for sharing I will make certain to watch all of your videos over time, truly a gift you are!

  • @cphVlwYa
    @cphVlwYa Před 3 lety +104

    If you shoot anhydrous ammonia with it, can you dissolve the electrons in it and see a color change as they become solvated?

    • @Piipolinoo
      @Piipolinoo Před 3 lety +9

      Very clever idea! I actually know the guys who published the initial paper about solvated electrons in the anhydrous ammonia. I'll let them know!

    • @glennbartusch7310
      @glennbartusch7310 Před 3 lety

      It's not that clever, assuming you're into a Birch reductions and whatnot...
      And who needs solvated electrons anyways? Walter White uses em lol haha rofl

    • @glennbartusch7310
      @glennbartusch7310 Před 3 lety +1

      ... but if there is any worthwhile knowledge acquired from immersing all in NH3, then bombardment via electron, it's to prove the idea that the blue color observed when the lithium hits the NH3 really is free electrons in solution, and not some other hitherto-undisclosed phenomena

    • @6alecapristrudel
      @6alecapristrudel Před 3 lety +3

      What about charge balance? You'd have no counter cation. I'm guessing it would just build up a static charge and stop long before any color can be seen.

    • @vejymonsta3006
      @vejymonsta3006 Před 3 lety

      I was also reminded of the solvated electrons. Lol I was curious if you were to try to measure the voltage of it, what would happen if anything?

  • @electronicsNmore
    @electronicsNmore Před 3 lety +67

    I don't know of any other channels that do what you do. You have underrated videos.

    • @matijaderetic3565
      @matijaderetic3565 Před 3 lety +4

      Ben is one of a kind, but you can check out tech ingridients, thought emporium, cody's lab. Action lab doesn't usually do these long projects, but has many small but amazing physics experiments.

    • @mark6302
      @mark6302 Před 3 lety +3

      no one has a setup like this guy

    • @mariusvarut87
      @mariusvarut87 Před 2 lety

      Science is not for everyone!!!

  • @videolabguy
    @videolabguy Před 5 měsíci

    Thanks! That demo was highly illuminating!

  • @xddelectronics
    @xddelectronics Před 3 lety

    It was an experiment that I wanted so much to accomplish but which I could not do. Thank you for doing this experiment.

  • @DEADPOOL-ti4cs
    @DEADPOOL-ti4cs Před 3 lety +3

    Wow! This channel deserve 10 million subscribers, I subscribed many science channels but no one is even close to this guy in coolness.
    Respect from india 🇮🇳

  • @mikeselectricstuff
    @mikeselectricstuff Před 3 lety +164

    Could you post-accelerate the electrons after they come through the window?

    • @cai0_o
      @cai0_o Před 3 lety +5

      Yes.

    • @tehdusto
      @tehdusto Před 3 lety +24

      Should be possible in principle. You would have to be fighting the air a lot though. The beam is also crazy divergent since the electrons strongly repel each other, so collimation will be another issue to work out.

    • @Lucius_Chiaraviglio
      @Lucius_Chiaraviglio Před 3 lety +8

      Scattering would be a problem (as you can see from the way the beam spreads out from the end of the tube, obviously more than how much it spreads out going down the tube.

    • @Nagria2112
      @Nagria2112 Před 3 lety +8

      only theoretical.
      thats why we build all that stuff in vacuum. air ruins everything.

    • @pizzablender
      @pizzablender Před 3 lety +3

      Field strength in air is limited. Especially when ionizing particles are present. Nice idea though, use the electron beam to trigger sparks or make air conductive without sparks perhaps.

  • @samesamesame0x2a56
    @samesamesame0x2a56 Před 3 lety

    Thank you A LOT for making these videos (all of them) !!!

  • @markatherton7848
    @markatherton7848 Před 3 lety

    Well done Ben !

  • @Ravedave5
    @Ravedave5 Před 3 lety +3

    When I was little learning about science and I tried to build a laser with a flashlight, cardboard tube, and tinfoil. Ben is what my child mind thought I could do, go into the garage and build that crazy thing. Keep being awesome.

  • @grahammartin8568
    @grahammartin8568 Před 3 lety +3

    My father used to work in air traffic control for the RAF, I remember as a youngster (1960's) visiting him at work and seeing a small room full of CRT's all without phosphored screens. When a call sent by an aircraft it was received by multiple stations each remotely controlling a CRT, the beams projected across the room onto a large (presumably phosphored) screen to auto-triangulate the aircraft location. Hope my memory stands the test of time.

  • @trustthewater
    @trustthewater Před 3 lety

    Great stuff.
    Also, glad to see the Andrew Seltzman e-beam videos getting mentioned. Those are just cool.

  • @lorez201
    @lorez201 Před 3 lety

    I'd seen that gopro video you mentioned before and was wondering what the dopant in those pieces of calcite were, now I know. Thanks for including that!

  • @chaumas
    @chaumas Před 3 lety +15

    It seems like the obvious thing to put in front of it would be a cloud chamber.

  • @forestlampcraft472
    @forestlampcraft472 Před 3 lety +14

    COOL!

  • @harinayan4956
    @harinayan4956 Před 3 lety

    Always love your videos Ben!! Thanks!!💞💞

  • @koushikkashyap439
    @koushikkashyap439 Před 3 lety

    You are officially my favourite CZcams experimenter.. amazing work.

  • @MrBranboom
    @MrBranboom Před 3 lety +35

    Heh, "Aperture Science" Now you're thinking with portals!.

    • @AtlasReburdened
      @AtlasReburdened Před 3 lety +7

      He does what he must, because he can.

    • @krap101
      @krap101 Před 3 lety +1

      But but will there be cake...

    • @AtlasReburdened
      @AtlasReburdened Před 3 lety +2

      @@krap101 Oh, yes of course. The cake is very delicious and moist. Most of all, the cake is real and not fake.

  • @Richard.Andersson
    @Richard.Andersson Před 3 lety +4

    We have a 1 MeV electron beam at work for cross-linking of cable insulations, some of which go into nuclear power plants. For more common applications there are cheaper ways of cross-linking plastics. The irradiation happens in a concrete bunker due to the safety aspects of the emitted radiation. Unfortunately I have not got to play with it too much... which is probably a good thing :)
    Correction of how the heat shrink works:
    You first manufacture the tube in its final shrunk size and then cross-link it. If you then heat it above its melting point it will not become liquid, but it is instead a "rubber" which you can stretch it by a lot. Cooling it in its stretched state will cause it to freeze in place, and it will only go back after heating above its melting point at a later stage. This is extra apparent if you use transparent heat shrinks (for example PTFE) as they are often milky at ambient temperature due to the crystals in the plastic, but at the temperature when it starts to shrink it usually turns transparent as the crystals melt.
    (Note: PTFE does not work well with electron beam crosslinking as it degrades (does not like radiation), but luckily it behaves as a cross-linked material already from the start due to the high amounts of chain-entanglements)

    • @wbeaty
      @wbeaty Před 3 lety

      @Richard_Andersson have you encountered the early history? Arno B., trying to fall off an Alp? (His co-author was killed.) Capacitron in 1951 Popular Mechanics, in Life mag 1947. Also Lawrence and his Megavolt, publishing.cdlib.org/ucpressebooks/view?docId=ft5s200764&chunk.id=d0e2505&toc.depth=1
      ALso see worldradiohistory.com/Archive-Electrical-Experimenter/SI-1928-06.pdf , Brasch tries to harness storm cloud as MV supply for atom-smashers.

  • @FantomZap
    @FantomZap Před 3 lety +1

    Yet another wonderful video, thank you!

  • @4n2earth22
    @4n2earth22 Před 3 lety

    As always, WAY COOL!!! Thanks Ben.

  • @R.Daneel
    @R.Daneel Před 3 lety +43

    Wintergreen mints? Is there enough energy to light up something triboluminescent.
    Yes, I know - completely different unrelated process. That's why I'm curious.

    • @rogerscottcathey
      @rogerscottcathey Před 3 lety +1

      I thought of the life savers, haha, but that requires crushing . . would they react anyway?🤔

    • @mikegLXIVMM
      @mikegLXIVMM Před 3 lety

      @@rogerscottcathey Triboluminescence.
      en.wikipedia.org/wiki/Triboluminescence

  • @kazzurt
    @kazzurt Před 3 lety +4

    Awesome video as always!
    One idea for another experiment: you could install a few solenoids in front of the cathode with incrementally increased B field to focus the beam to a tighter point. This could reduce the amount of wasted electrons that hit the anode and send more through the window. (I'm not sure if this vacuum tube is big enough for the number of windings and length needed, but I could run a quick simulation in Comsol if it seems like an idea worth trying.)

    • @agranero6
      @agranero6 Před 11 měsíci

      Magnetic lenses are incredibly difficult to control, they require a complex geometry of the core, that is why electrons are focused by electric fields much easier to create and control in CRTs and X-ray tubes, so this should be made inside the vacuum side, but it would fry the Lenard window. T he magnetic control is only used for the scan in CRTs for TVs and is electrostatic in CRTs for oscilloscopes because the TV screen is much larger, has a weird geometry and it is a pain in the ass to adjust, so most of the adjustment is made electrostatically. In electron microscopes most of the control is made by magnets several of them.

  • @soheilkhiavi7912
    @soheilkhiavi7912 Před 3 lety

    Ben, great work.

    • @soheilkhiavi7912
      @soheilkhiavi7912 Před 3 lety

      I forgot to, ask, how SiN is different from Mica screens used in alpha particle detectors? Durability maybe?

  • @johndoe528
    @johndoe528 Před rokem +1

    A 100nm membrane supporting 1 atmosphere of pressure is absolutely mind-blowing

  • @patrickjdarrow
    @patrickjdarrow Před 3 lety +29

    Do you (or anyone else) have recs for similar channels with applied physics experiments?

    • @AppliedScience
      @AppliedScience  Před 3 lety +60

      Sure! czcams.com/users/SamZeloofvideos czcams.com/users/xofunkox czcams.com/users/florencefst czcams.com/users/phywesystemevideos czcams.com/users/tuopeek1videos czcams.com/users/nylesteinervideos czcams.com/users/CarlWillis1980videos

    • @patrickjdarrow
      @patrickjdarrow Před 3 lety +9

      @@AppliedScience legend
      🙏

    • @clonkex
      @clonkex Před 3 lety

      @@AppliedScience Why have I never thought to ask you this before

  • @joeymurphy2464
    @joeymurphy2464 Před 3 lety +14

    I'd be curious about giving atoms some extra electrons. Like what happens if you take a chunk of sodium, shoot it with this, then throw it in water? Will it be "supercharged" with even more electrons than usual, and release more energy when you activate it?
    Another idea: stick Styrofoam peanuts to something with static electricity (maybe the lid to a plastic tote container) and see if this thing can knock the peanuts off.
    Would this travel farther in helium/hydrogen due to lower density? That would be cool to see.
    What happens if you take a second tube with a second window at one end, phosphor at the other end, and vacuum inside? Can you put window to window, with a gap of 5mm or something, such that it traverses air, then goes back into vacuum, and then can travel another 10cm before striking phosphor to make a spot? That would be neat, transferring electrons from one vacuum chamber to another, across an air gap.

    • @darioorlic1941
      @darioorlic1941 Před 3 lety +7

      Since sodium is conductive, all of the charge would be located on the surface of the chunk and I think it would discharge as soon as it touched another material (even non-conductive, like the thing you're holding it with or water). Highly charged metals even emit electrons into the air, so I think there would be no difference between throwing sodium in water with and without exposing it to the beam first.

  • @maxzet368
    @maxzet368 Před 3 lety

    such a great video again!

  • @Erik_Swiger
    @Erik_Swiger Před rokem

    Your channel is great, subscribed. It's fun and educational, and that's what I like.
    Years ago, I found an big old school building, that I wanted to buy and live in. It's 13,000 sq. ft. As I was daydreaming about living there, I wondered how I would heat it. I'm into "alternative" stuff, as it was in those days. I finally realized I needed a small, intense heat source year-round, to run a generator and heat water, so I came up with my own design for a fusion reactor, using a collimated electron beam aimed down the axis of a cylinder. By my "best estimation" (lol) it would take 90% of its output to keep itself going. But I thought, WTH, all I need is some deuterium and tritium. It's probably a good thing I don't have a shop or access to power tools.
    Keep making awesome videos, thanks.

  • @gatoalfa7
    @gatoalfa7 Před 3 lety +35

    You really overestimate the capabilities of the rest of us here, “one other trick if you decide to do this, the aperture has...” 😄😄

    • @monad_tcp
      @monad_tcp Před 3 lety +6

      literal Aperture Science

    • @johndododoe1411
      @johndododoe1411 Před 3 lety +1

      @@monad_tcp Note the common availability of the apertures that the fictional "Aperture Science" actually specialized in.

    • @interstellarsurfer
      @interstellarsurfer Před 3 lety +2

      @Evi1M4chine That's why a large part of success is circumstance and luck. Hard work is the only multiplier you have any control over.

  • @guytech7310
    @guytech7310 Před 3 lety +4

    Some ideas to try:
    1. Put a hard metal in the beam and measure the increase of X-rays.
    2. See what happens if you put a leaf foil in the beam path.
    3. Epoxy a glass tube on the other side and see what happens with various gases at very low pressures (neon, Argon, CO2. also try a magnet or electromagnet coil to see if it deflects the beam. At much lower pressures you should be able to get the beam to travel further.
    4. Make a tiny CRT tube instead of using the electron window, use a flat bottom closed tube or small erlenmeyer flask with the bottom coated with a phosphor & magnetic yokes to control the beam path.

    • @pavelperina7629
      @pavelperina7629 Před 3 lety

      About X-ray, you can get energy and convert it to wavelength using for example the following table www.jeolusa.com/DesktopModules/LiveContent/API/Image/Get?mid=4725&eid=1&Type=View&PortalId=2
      But I don't know what the is efficiency is depending on beam energy and material. My experience is that with beam energy of 30keV (which is limit of SEMs due to safety restrictions) x-ray detector barely detects anything above 10keV and there's nothing above 18keV.

  • @cristianbataturescu5695

    Nice, i will like more videos about this and the applications., good job man

  • @danimaster6647
    @danimaster6647 Před rokem

    I think this is the best science channel on CZcams. The amount of knowledge this guy has is insane

  • @randomlygenerated84
    @randomlygenerated84 Před 3 lety +6

    Woah! Have you made a cloud chamber yet? Might be an interesting target.

  • @enquiryplay
    @enquiryplay Před 3 lety +12

    "I've got some home made aerogel" ... As you do.

  • @Equality7-2521
    @Equality7-2521 Před 3 lety

    Being in lock down, I've probably spent to much time on YT.
    That being so, I've just 'discovered' your postings.
    Your range of science knowledge, its explanation and its application is magnificent. you are a polymath!
    Being a bit weird, I have a utopian dream.
    40% Polymath, 30% Farmers, 25% Artisans, 5% Entertainers, and
    0.000000000000000000000000000000001% Politicians.
    Keep up the good work, I now have a favorite YT channel.

  • @aga5897
    @aga5897 Před 3 lety

    Superb, as always !

  • @carlswenson5403
    @carlswenson5403 Před 3 lety +23

    sweet. homebrew quantum physics here we come!

  • @BlankBrain
    @BlankBrain Před 3 lety +7

    My dad was a physicist who designed field emission systems. In particular, he designed field emitter arrays for several systems. The big machine looked like a locomotive. It used a Marx surge pulse generator to generate high voltage at high current. It was charged at 8.6 kV and discharged at 2.5 MV. The pulse duration was in the 4 nS range. The pulse was directed into a cold cathode tube, which generated the electron beam. The device was used to x-ray bomb blasts in the desert, simulate atomic blasts, and radiation-harden semiconductors. If you were standing beside the unit, not in front, there was enough scattered radiation from one pulse to kill you.

    • @jhonviel7381
      @jhonviel7381 Před 3 lety +1

      cool

    • @wbeaty
      @wbeaty Před 3 lety

      Hermes, izzat you?
      I saw a great announcement from Project Hermes: they could repair it so very rapidly, that they could now fire over five pulses in a single week!

  • @crippy59
    @crippy59 Před 3 lety +2

    Humble improvement to previous comments:
    1. Mist of fluorescent dye (e.g. zyglow). might need to dilute w/ alcohol. Mist w/ ultrasound.
    2. Instead of bread, a standard test is agar in a petri dish. Touch with dirty fingers. Cover with plastic wrap (only 12 um thick). Sterilize!
    Thanks for another amazing video.

  • @maurod6180
    @maurod6180 Před rokem

    Amazing Bro! I love your channel!!

  • @michaelaguilar9751
    @michaelaguilar9751 Před 3 lety +29

    Me, through most of the video: "Stick your finger in it!" Me, at end of video: "awwww". Nice work, as usual, I really enjoy your videos.

  • @sbalneav
    @sbalneav Před 3 lety +23

    "Eventually, you just run out of atoms..." Pop by my place, I'll let you have a mole or two of whatever you need.

    • @Asdayasman
      @Asdayasman Před 3 lety +2

      Gold, please.

    • @outputcoupler7819
      @outputcoupler7819 Před 3 lety +3

      I'll take a mole of your finest oganesson, please.

    • @itsevilbert
      @itsevilbert Před 3 lety +1

      @@Asdayasman Thanks, nearly screwed up and picked Palladium.
      Gold sells for ~$63 per Gram and there is 197.0 g in a mole of Gold - Gold costs ~$12,411 per mole.
      Palladium sells for ~$78.37 per Gram and there is 106.42 g in a mole of Palladium - Palladium costs ~$8,340 per mole.

    • @Asdayasman
      @Asdayasman Před 3 lety +2

      @@itsevilbert m8 why are you assuming I have enough brain cells to rub together? I just picked something shiny.

  • @Mosfet510
    @Mosfet510 Před 3 lety

    This was fun to watch!

  • @Umpalumpote69
    @Umpalumpote69 Před 3 lety

    Chased a turbomolecullar vacuum pump for a few years on Ebay.. and it was way beyond my range $$$. it have to be really awesome to have one!! Never the less that is literally awesome video, and it actually expand one's knowledge.. specially about cancer radiation treatment....

  • @rertnerfurtheng3771
    @rertnerfurtheng3771 Před 3 lety +5

    Can this be used to generate electride salts by just blasting an aqueous solution of some relatively electropositive salt/salts or something of the sort? Could be very useful to obtain an aggressive reductive agent without the need for special precursors.

  • @bengmo64
    @bengmo64 Před 3 lety +11

    I would really like to see you bend the beam with a magnetic field

  • @thetruthexperiment
    @thetruthexperiment Před 3 lety

    No way!!! Another thing I’ve always wondered about! You’re the man!

  • @teambridgebsc691
    @teambridgebsc691 Před 3 měsíci

    Practical learning applied science - great teacher.

  • @billsinkins361
    @billsinkins361 Před 3 lety +12

    Applied Science: "Coolest thing I've seen in a long time"
    Me: "Most amazing thing I've seen ever"

  • @johnnydeep7089
    @johnnydeep7089 Před 3 lety +10

    The electrons only have 25kev kinetic energy, so the highest charge they can give the acrylic is 25kv. This is not sufficient to cause much (any?) dielectric breakdown.

    • @Muonium1
      @Muonium1 Před 3 lety +7

      I don't think that's how it works. You have to think of the electrons like bullets penetrating into ballistic gel. For a given eV (ie. velocity) they are all going to pile up at the same location inside the material (at the Bragg peak) and get stuck there bc it's an insulator. The voltage gradient across the acrylic is then going to be a function of the number of electrons trapped inside, which itself is going to be dictated by the electron beam luminosity and beam exposure time rather than the electron energy. The electrons just pile up inside the insulator until the dielectric breakdown gradient is exceeded and a little lighting bolt finally spontaneously forms through it equalizing the voltage difference.

    • @AppliedScience
      @AppliedScience  Před 3 lety +6

      The speed of the electrons would determine how deeply in the material they can embed, or if they are repelled by the existing built-up charge in the material. But the charge on each electron is always the same, so getting a certain number of electrons into the center of the plastic should always have the same effect upon discharging them. As far as I know.

    • @pavelperina7629
      @pavelperina7629 Před 3 lety

      @@AppliedScience I don't know if electrons create positive or negative charge. You are adding some electrons, but at the same time they are causing emission of secondary electrons. Have you tried to measure current between sample and ground in your SEM?
      Speaking about SEM, way why not to use tungsten cathode and Wehnelt cylinder instead of light bulb?

  • @theworkshopofparacelsus2404

    Really cool video! Thank you.

  • @manisofluit5328
    @manisofluit5328 Před 3 lety

    Im a mechanic electric science physics chemistry and biology knowledge lover!
    Im realy enjoying your channel, therefore my subscribe to it.
    What I love the most about it, is how you explain the things in a way which is very comfortable for the listener to understand.
    You don't leave anything out. You guide us into the whole proces perfectly!
    My respects bro! I salute you :) Just Keep it coming! AND Don't you stop being awesome!
    My greetings from the Netherlands ;)

  • @TechsScience
    @TechsScience Před 3 lety +2

    But how come we know the emitted light is Photon or electron?

    • @yottaforce
      @yottaforce Před 3 lety +1

      An electron beam will be deflected by magnets. Photons won't.

  • @angel.avila.
    @angel.avila. Před 3 lety +3

    AS: one of the coolest things I've seen in a long time
    me: trying my best to understand why it's cool

  • @tvathome562
    @tvathome562 Před 3 lety

    put camera in beam various angles? congrats on another amazing video the range and depth of your knowledge is truly inspiring.

  • @PerspectiveEngineer
    @PerspectiveEngineer Před 3 lety

    You are so awesome you have people viewing your videos have no context...
    And then you have 90% of us who think they know what you're talking about...
    It's like having a nephew that's a lab teacher.
    And we can hate you because you are nephew....
    God I love this channel

  • @WarrenGarabrandt
    @WarrenGarabrandt Před 3 lety +17

    "Other than my finger" That hadn't even occurred to me. What would happen if something organic got close to that? Can you try this on like a hot dog or something?

    • @AlexanderBukh
      @AlexanderBukh Před 3 lety +5

      a bit of cancer, that's what, i.e. dna damage

    • @wbeaty
      @wbeaty Před 3 lety

      Analogous to thermal damage. So, you'd receive a burn.
      But not just on the surface.

  • @PowerPC602
    @PowerPC602 Před 3 lety +15

    Film. Put a peace of 35mm film and let see what we can go through with electrons !

    • @mfbfreak
      @mfbfreak Před 3 lety +5

      A sheet of photo paper, wetted with developer, would yield almost immediate results :)

    • @whitcwa
      @whitcwa Před 3 lety +2

      Electron beam recorders were used in the 1960s to 1980s to transfer video to film.

    • @Broken_Yugo
      @Broken_Yugo Před 3 lety

      You'd have to figure out how to filter out the x rays.

    • @bjl1000
      @bjl1000 Před 3 lety +1

      @@whitcwa We used electron beams to write on 16mm microfilm in 1973. The film was 3 feet away from the emmiter.

    • @wbeaty
      @wbeaty Před 3 lety

      Get an old cam w/fairly large CCD, then paint it with zinc sulfide paint. (DIY dental x-ray sensor.)

  • @jburns47
    @jburns47 Před 3 lety

    Reminds me of an optical spatial filter on a smaller scale🤪 - The silicon nitride window being analogous to the optical spatial filter’s pinhole...awesome video.

  • @BozhidarStefanov
    @BozhidarStefanov Před 3 lety +1

    Gee... this really brought me into my PhD years. I remember we bought a bunch of those and I was trying to sputter deposit some amorphous material onto them and watch it crystallize in situ in TEM (every time I took them out of the sputterer I found them exploded). I almost was shocked when you mentioned that they can hold vacuum, since I remember how fragile they were (but at least the plasma thing in the beginning of the vid made me calm again). Amazing work, though, Ben! Huge fan of your channel!

  • @gcr100
    @gcr100 Před 3 lety +4

    I'm really wondering why they made these square instead of circular (Talking bout the window, not the whole structure), i bet the stress reduction by doing that would make posible to manufacture these even thinner

    • @OverUnity7734
      @OverUnity7734 Před 3 lety +1

      Good observation, I would guess they are utilizing the semiconductor manufacturing processes already in use .

    • @AtlasReburdened
      @AtlasReburdened Před 3 lety +4

      Yeah, probably because it's made in a wafer form that's then cut into squares.

    • @gcr100
      @gcr100 Před 3 lety +1

      @@AtlasReburdened i meant the small window, not the whole structure that it comes in, as Jack Allen mentioned it could very weel be due to the process used to make them

    • @milantrcka121
      @milantrcka121 Před 3 lety

      Hard (really hard) to make a round scribe or round cut in thin fragile material. Even making a square window in the SiN seems pretty hard to accomplish. But they did it. Perhaps laser cut???

    • @AtlasReburdened
      @AtlasReburdened Před 3 lety +1

      @@gcr100 Oh, I wasn't aware that the window and it's 'frame' were a single piece. I guess that makes more sense though. That is interesting. I recall learning once that some echants used in simiconductor manufacture behave quite differently depending on the orientation of the atomic level crystalline structure so it may be that the cubic form of Silicon nitride is used, and is cut such that it's orientation permits the echant to preferentially 'eat away' in one direction which, given the cubic structure, would likely mean that a square window could be made with fewer flaws than one of any other shape. Just an educated guess though.

  • @AvNotasian
    @AvNotasian Před 3 lety +7

    Soak some meat in a phosphorescent liquid then expose it to the beam to visualise penetration depth.

    • @AvNotasian
      @AvNotasian Před 3 lety +1

      @@busimagen Good point, although now that I think about it the advantage of this equipment is seeing the effect of beta rays at atmospheric pressure, could just put a steak in a vacuum chamber to do what I'm talking about :P

  • @sangeeth_619
    @sangeeth_619 Před 3 lety

    I've always wanted to see a notification "my home made fusion reactor" from you! 😁

  • @michaelharrison1093
    @michaelharrison1093 Před 3 lety

    The process of making Lichtenberg figures in clear acrylic is quite an experience - the flash of light and audible noise when you shock the acrylic with a sharp pointed center punch is quite impressive. The process works well when you have a few MeV - the rule of thumb I was told is that 1MeV produces about 5mm of penetration in the acrylic.

  • @ANATURALDREWSASTER
    @ANATURALDREWSASTER Před 3 lety +3

    I've now got a turbo pump in my ebay cart, my wife is gonna murder me

  • @simontay4851
    @simontay4851 Před 3 lety +41

    Things to put in front of the beam other than your finger: Your toe.

    • @AppliedScience
      @AppliedScience  Před 3 lety +34

      Nice try.

    • @Asdayasman
      @Asdayasman Před 3 lety +2

      @@AppliedScience The other finger that you didn't specify!

    • @Pixelarter
      @Pixelarter Před 3 lety

      I was going to suggest his eyeballs, but I thought it was too evil and refrained from commenting.

    • @zebo-the-fat
      @zebo-the-fat Před 3 lety +1

      Someone else's finger??

    • @Asdayasman
      @Asdayasman Před 3 lety

      @@zebo-the-fat I'd volunteer my finger if I hadn't already pledged it to Korone.

  • @sagerobot
    @sagerobot Před 3 lety

    I found it very interesting! Thanks for making this video :)

  • @Gamewizard13th
    @Gamewizard13th Před 3 lety +5

    Within a minute club

    • @Jameson1776
      @Jameson1776 Před 3 lety +1

      My ex-girlfriend told me I should not be proud of that club.

    • @Gamewizard13th
      @Gamewizard13th Před 3 lety +1

      @@Jameson1776 why would your ex-girlfriend not be excited to have the big O in under a minute?

    • @Jameson1776
      @Jameson1776 Před 3 lety

      Nekoda Fleming lol

  • @wiwingmargahayu6831
    @wiwingmargahayu6831 Před 11 měsíci

    crt tv is amazing good job Sir

  • @denniswood5946
    @denniswood5946 Před 3 lety +1

    Great video! You should try chilling the pink-calcite below 0c, then irradiate it, then watch it as it warms up to room temp. It will display thermoluminesence as it warms. I've made a few Lichtenberg figures on medical linacs, usually ones that are about to be removed. I've wanted to try pink calcite but haven't purchased any yet.

  • @sinmim1
    @sinmim1 Před 3 lety

    very very very coooooooooool ! the best science channel ever!

  • @thomasrussell4674
    @thomasrussell4674 Před 5 měsíci

    One time I saw a photo in a physics book of a cyclotron or synchrtron just discharging a deuteron beam straight into the air, it's an amazing thing to see a beam itself that's visible in the air.