The mighty mathematics of the lever - Andy Peterson and Zack Patterson

Sdílet
Vložit
  • čas přidán 17. 11. 2014
  • View full lesson: ed.ted.com/lessons/the-mighty-...
    Archimedes once said “Give me a place to stand, and I shall move the Earth.” While the idea of a person moving such a huge mass on their own might sound impossible, chances are you’ve seen this idea in action at your local playground. Andy Peterson and Zack Patterson use the seesaw to illustrate the amazing implications and uses of the lever.
    Lesson by Andy Peterson and Zack Patterson, animation by The Moving Company Animation Studio.

Komentáře • 492

  • @FishyArchaeologist
    @FishyArchaeologist Před 9 lety +104

    Good video, but the statement that "simple machines reduce the amount of energy that is required for a task" is incorrect. The energy to do a task remains constant; a simple machine reduces the force required (or power required) to do something, but at a cost of applying that force over a longer distance. The force applied times the distance over which it is applied is the change in energy, which remains constant.
    In fact, the force x distance rule for calculating torque (as shown in the video) relies precisely on the conservation of energy.

    • @minecraftbasics1366
      @minecraftbasics1366 Před 2 lety +7

      Oh wow I definitely understand what you wrote

    • @jek438
      @jek438 Před 2 lety +4

      @@minecraftbasics1366 in physics work is defined as Force(pushing or pulling an object) multiplied by Distance = Work. Basically what he is saying is you are sacrificing the amount of force you use for a longer distance. It just makes the work easier because you are using less force, but over a greater distance, so you are still consuming the same amount of energy but it is easier because you are using less force.

    • @minecraftbasics1366
      @minecraftbasics1366 Před 2 lety +1

      @@jek438 oh thanks for explaining

    • @matthewrigby6089
      @matthewrigby6089 Před rokem

      It also makes it seem like the work is the force x lever arm distance, when really the work done is the force times distance the edge of the teeter totter goes down.

  • @digestivebiscuits5276
    @digestivebiscuits5276 Před 4 lety +111

    When the guy was lifting the earth, i was waiting for it to roll down the pole and squish him.... is that just me or??????

  • @Tamizushi
    @Tamizushi Před 9 lety +267

    Hey you just need to pull the moon closer, that's all.

    • @oracle372
      @oracle372 Před 6 lety +2

      Cute Kitty!!!!!!!!!!!! (Is that a Japanese name? I was born in “that place”

    • @ME0WMERE
      @ME0WMERE Před 4 lety +3

      AWWWWWWW, KITTEN!

    • @ryannguyen1153
      @ryannguyen1153 Před 4 lety +1

      That was unexpected @Oracle Turret and MinecraftCalzone😈😈😈😈👾💩👻💀☠️👽😺😸😽😼😻😿😹🙀

    • @syahronisyafii4745
      @syahronisyafii4745 Před 3 lety +1

      You it's dog you mean

    • @damiankryski6153
      @damiankryski6153 Před 3 lety +1

      yeah then we will turn into an inhabitable planet

  • @luisfdconti
    @luisfdconti Před 8 lety +19

    That's a good proportionate drawing real scale right there at the end.

  • @kieranegg5444
    @kieranegg5444 Před 6 lety +20

    thx you just saved my science assignment

  • @biranfalk-dotan2448
    @biranfalk-dotan2448 Před 9 lety +273

    Simple machines do NOT reduce the amount of energy needed for a task. The work done is the same. They reduce the amount of FORCE.

    • @lordilluminati5836
      @lordilluminati5836 Před 8 lety +6

      +Biran Falk-Dotan yeah, they should have said that

    • @rabeeaishtiaq4980
      @rabeeaishtiaq4980 Před 7 lety +7

      but how it is not the same thing?

    • @Legac3e
      @Legac3e Před 7 lety +40

      I will use the example of the girl and the friend who weighs twice as much as her.
      In order to lift her friend she would have to sit twice as far from him in order to lift him, right? What he didn't mention is that her friend would only be lifted half the distance that she traveled. You can see it in the animation but he didn't explain that part very well.
      So in order to lift the friend say 1 meter she would need to travel 2 meters. And that is the trade off.
      So with the equation of force 1 * distance 1 = force 2 * distance 2 we have
      150 lb * 2 meters = 300 lb * 1 meter.
      that represents the length of the lever, so if she travels downward say 4 meters on her end then the friend would only be moved upward 2 meters on his. The energy in the system is the same since energy cannot be destroyed nor created, only transferred from one form to another. Otherwise the lever would somehow be creating energy, which is isn't. So thats why what he said is incorrect.
      Hope that made sense. :)

    • @ZigSputnik
      @ZigSputnik Před 5 lety +24

      He said, it does NOT reduce the amount of work (energy) required.

    • @andnor
      @andnor Před 5 lety

      @Szymon96335 [MOBILE] Levers tend to be more consistent in their results...

  • @LarsHarmsen1337
    @LarsHarmsen1337 Před 9 lety +52

    So I just bought me one of those quadrillion light years long lever, but I still can't move the earth.
    Do I need gravity below me or something to apply a force?

    • @krisinox888
      @krisinox888 Před 9 lety +4

      you need something to apply the force - on Earth you have gravity for the force, in space you can use something to create a kinetic energy

    • @markbtw7987
      @markbtw7987 Před 9 lety +7

      You'd also need for the fulcrum to be much denser and heavier than the earth unlike the moon or it would be the one to move.

    • @Watupm
      @Watupm Před 9 lety +2

      nah just need some rocket boots :p

    • @ummidontevenknow4509
      @ummidontevenknow4509 Před 8 lety +1

      +Lars Harmsen do u want us to die

    • @science-y9209
      @science-y9209 Před 6 lety

      no there is no necessity of having a fulcrum heavier than
      earth. although we can't take a small stone to lift the huge earth.😁😄

  • @hougijock4024
    @hougijock4024 Před rokem +7

    To be honest, I have never come across such a teacher like you sir!!

  • @KershalJC
    @KershalJC Před 3 lety +7

    The visuals on this is so well done. Thanks Ted Ed.

  • @new25ash
    @new25ash Před 9 lety +17

    I'm watching this video on my iPad on a laptop tray and didn't even realise that I'm balancing my iPad and beer at the same time using lever! Great video👍

  • @ahmermirza
    @ahmermirza Před 6 lety +6

    ted-ed videos...always leaving me goosebumped...

  • @dalma_makes
    @dalma_makes Před 9 lety +40

    This was so beautiful! Well done to the artist and creators!

  • @duckymomo7935
    @duckymomo7935 Před 6 lety +23

    there are 3 classes of levers
    the one featured is class 1: see-saw
    class 2: wheelbarrow
    class 3: baseball bat, fishing rod or tongs

  • @roku6ix
    @roku6ix Před 2 lety +2

    note to self: when life (and uni) gets too complicated, always come back to Ted-Ed

  • @earthianprithviwasi
    @earthianprithviwasi Před 3 lety +3

    this was one THE BEST THINGS I HAVE LEARNED SO FAR, THANK YOU TEDed "WAITING FOR PART 10 OF THINK LIKE A CODER"

  • @williamthomalla9149
    @williamthomalla9149 Před 4 lety +1

    I dunno what I would di without ted-ed

  • @sadiqrahimi9955
    @sadiqrahimi9955 Před 4 lety +2

    Woo.
    This channel deserves a subscription.

  • @gregoryhart811
    @gregoryhart811 Před 3 lety +25

    Yeah but... there's no "downward" gravitational pull on Archimedes in space, so he'd have to do more than just sit on it :)

    • @enyupan9276
      @enyupan9276 Před 3 lety +3

      Well, what if the other end of the lever is on a planet with similar gravity to earth?

    • @windywinend586
      @windywinend586 Před 3 lety +2

      Use 10 Archimedes

    • @ryann7741
      @ryann7741 Před 3 lety

      @@windywinend586 lmao

    • @Jayozranger
      @Jayozranger Před 2 lety

      What if he got a big block and then kicked or pushed it onto the lever

  • @alexoukivogi5043
    @alexoukivogi5043 Před 7 lety +2

    Very useful, thank you so much.

  • @souperJAC
    @souperJAC Před 9 lety +16

    It would be great if they added in the other classes of levers. I would also low it if they made a video like this for each of the simple machines!

  • @gustavoborjagonzalez1593

    its amazing how a simple thing can have a lot of uses

  • @TheConfuzzledCat
    @TheConfuzzledCat Před 5 lety +8

    This was so helpful. My tech teacher didn't explain this well and I couldn't understand the homework at all. Now I can do it with some ease. Thank you so much

  • @frostyhotcocoa7809
    @frostyhotcocoa7809 Před 6 lety +6

    I just wanna ask one question, where is the gravity??

  • @sophiab4701
    @sophiab4701 Před 4 lety +2

    Thank you so much! This was so helpful :)

  • @cuauhtliabrahamriosjimenez2923

    La funciones de cada una de las distancias me pareció increíble ya que con las medidas exactas puedes levantar las cosas bien.

  • @laraghannam2867
    @laraghannam2867 Před 6 lety +1

    Thanks that really helped!

  • @charmainewright5079
    @charmainewright5079 Před 3 lety

    Awesome! I am excited to share with my students👏👏👏👍.

  • @sdgb5363
    @sdgb5363 Před 2 lety

    A very elegant and informative video! Thank you :)

  • @yf1177
    @yf1177 Před 8 měsíci +1

    1:18: energy required is NOT reduced with the lever, rather the force is reduced. Energy is always conserved. Work In = Work Out

  • @shivamsen1345
    @shivamsen1345 Před rokem

    Thank you

  • @josiahshaw190
    @josiahshaw190 Před 8 lety

    thank you so much very helpful

  • @oluwaseunjoseph2537
    @oluwaseunjoseph2537 Před 8 lety

    great work

  • @danialilianachavezcanas5347

    Me pareció un video muy interesante, tres aspectos que desconocía del tema fueron:
    1.Toda palanca tiene 3 componentes principales: el brazo de potencia, el brazo de resistencia y el punto de apoyo.
    2.Una palanca esta equilibrada cuando el producto de la fuerza de potencia y la longitud del brazo de potencia, es igual al producto de la fuerza de resistencia y la longitud del brazo de resistencia.
    3.La palanca facilita el trabajo dispersando su peso en toda la extensión de los brazos de potencia y de resistencia (si una persona pesa dos veces más que tú, tienes que sentarte dos veces más lejos que él del centro para levantarlo).

  • @viankapark6709
    @viankapark6709 Před 6 lety +1

    Really nice...Helped me understand the concept

  • @marianarubioramirez4559
    @marianarubioramirez4559 Před 3 lety +1

    no conocia los diferentes tipos de palancas y wooow ahora que las conozco me quede imprecionada muy buena exlicacion y traduccion

  • @gabrielmajor7921
    @gabrielmajor7921 Před 9 lety +18

    Incrível. Se eu tivesse a oportunidade de aprender matemática assim, saberia muito mais. Simplesmente show!

    • @zainalassegaf6720
      @zainalassegaf6720 Před rokem

      Mathematic is difficult i dont understand by mona noorchaalida

  • @Sporge420
    @Sporge420 Před 7 měsíci +1

    These are just lifehacks!!!

  • @KurdstanPlanetarium
    @KurdstanPlanetarium Před 9 lety +12

    Easy said than done! Yakov Perelman in his famous book " Physics for Entertainment", discusses the idea of Archimedes trying to lift Earth; he would be using a lever with a longer arm 10^23 times longer than the shorter one, and to lift Earth by at least 1 cm, Archimedes must follow a hug arc in space about 10^18 Km. This is a colossal distance which Archimedes would have to push the lever to lift Earth just by 1 cm. Presuming that Archimedes could have lifted 60 Kg, 1m/s, then to lift Earth (5.97 * 10^24 Kg), he would need 10^21 Seconds = 31.7 Trillion years (Age of visible Universe =13.7 Billion years) !!

    • @geomochi4904
      @geomochi4904 Před 6 lety

      10^23 = 100,000,000,000,000,000,000,000
      10^18 km = 1,000,000,000,000,000,000 km
      10^21 secs = 1,000,000,000,000,000,000,000 secs

  • @WilliamBarker
    @WilliamBarker Před 9 lety

    Well done.

  • @CavCave
    @CavCave Před 4 lety +15

    But to lift the Earth, you need to apply force. There's no gravity at the end of your effort arm, so you can't use your own weight as force.

    • @superjay-bd1sh
      @superjay-bd1sh Před 4 lety +2

      facts

    • @amiryousef2153
      @amiryousef2153 Před 3 lety +2

      Okay so bring a can of fly spray, increase the lever by 10, and there you go

    • @kimayasingh9555
      @kimayasingh9555 Před 3 lety +1

      thats y they used the word hypothetically before they started

    • @cansabanci
      @cansabanci Před 3 lety +1

      i mean also earth weights zero so no problem xD

    • @sidra-tul-muntaha1848
      @sidra-tul-muntaha1848 Před 3 lety +2

      but there is a possibility , he is trying to imagine

  • @ritwikkaushik2342
    @ritwikkaushik2342 Před 5 lety +2

    This vedio is very useful and it cleared all my doubts concerning lever

  • @N1t_in
    @N1t_in Před 2 lety

    Beautiful

  • @cookiemonster6963
    @cookiemonster6963 Před 6 lety +9

    Fulcrum

  • @heidyguadalupeperezflores8286

    Desconocía por completo que las palancas se componen del brazo de potencia, resistencia y punto de apoyo. Suena muy interesante que las palancas sirven mucho mas de lo que pensamos en nuestra vida cotidiana, ya que son muy útiles. también desconocía quien fue el que lo descubrió , el matemático Arquímedes.

  • @monicafoley1136
    @monicafoley1136 Před 3 lety +2

    I HAVE LEARNED EVERTHING

  • @naomialessandragarciavazqu3729

    Es un video muy interesante y fácil de entender gracias a las ilustraciones y ejemplos tan concretos que dan. Siempre había tenido la inquietud de como los mayas había hecho para levantar y transportar piedras tan pesadas para construir las pirámides y con este video creo que empiezo a entender que estrategias utilizaban. Algunos puntos interesantes que no tenía en mente son:
    • Arquímedes describió el principio fundamental subyacente a la palanca. Y explico lo siguiente: el trabajo medido en Joules es igual a la fuerza aplicada por la distancia.
    • Las palancas son un tipo de máquinas simples, las cuales son dispositivos básicos que reducen la cantidad de energía requerida para una tarea, aplicando inteligentemente las leyes básicas de la física.
    • Las palancas tienen 3 características fundamentales: el brazo de potencia, el de resistencia y el punto de apoyo. Estas facilitan el trabajo dispersando el peso en toda la extensión de los brazos de potencia y resistencia.
    • Una persona que pesa 68 kilos con una palanca de 3,7 metros de largo podría equilibrar a un auto Smart o con una palanca de 10 metros para levantar un bloque de piedra de 2,5 toneladas, como lo usaron para construir las pirámides.
    • Los elementos básicos de las palancas y de otras máquinas simples están a nuestro alrededor en varios instrumentos y herramientas que usamos, como otros animales, para aumentar las chances de supervivencia o solo para facilitarnos la vida.

  • @estebanalfredoespinozadelg819

    Me pareció un video muy interesante, tres aspectos que desconocía del tema fueron:
    1.Toda palanca tiene 3 componentes principales
    2.Una palanca esta equilibrada cuando el producto de la fuerza de potencia y la longitud del brazo de potencia, es igual al producto de la fuerza de resistencia y la longitud del brazo de resistencia.
    3.La palanca facilita el trabajo dispersando su peso en toda la extensión de los brazos de potencia y de resistencia.

  • @cazaresmancinaslilianaelen1797

    El video es muy interesante y muy claro con sus ejemplificaciones lo cual lo hizo muy entendible, en el cual se dio a conocer con la información varios aspectos que desconocía del tema los cuales son:
    - La palanca tiene 3 componentes principales: el brazo de la potencia, el de resistencia y el punto de apoyo.
    - La relacion importante entre fuerza de potencia y resistencia de potencia; es decir, entre las magnitudes de estas fuerzas y sus distancias al punto de apoyo.
    - Que la palanca esta en equilibrio cuando el producto de la fuerza potencia y la longitud del brazo de potencia es igual al producto de la fuerza de resistencia y la longitud del brazo de resistencia.
    - leyes basicas de la fisica: El trabajo medido en joules es igual a la fuerza aplicada a la distancia, haciendo que la palanca no se le pueda reducir el trabajo reuerido para levantar algo.
    - Ademas, con una palanca grande se pueden levantar cosas pesadas.

  • @shubhamkumar442
    @shubhamkumar442 Před 4 lety

    very nice explanation sir

  • @idicula1979
    @idicula1979 Před 4 lety +4

    I always thaught this was a philosophical Buddha type quote, but the beauty of it is both of science and wonder. Very much as two points on a grid make a line, three points make a plane, and so on and son four and five points make four and five demenshonal shape. Our understanding is only limited by the limits of our curiosity.

  • @YtubeUserr
    @YtubeUserr Před 8 lety +36

    Also, Archimedes would have to travel/push down the arm for millions of light years to lift the Earth by 1centimeter. This is considering that the fulcrum is at the moon-distance as mentioned. Considering that Archimedes used a Rocket-Ship and pushed down the arm at close to light speed, he still would have to live for zillions of years to keep pushing.
    But time varies with gravity and Archimedes at the end of the lever must be in a Supervoid part of the Universe; so that zillions of years on LocalCluster-Galaxy-Sun-bound Earth = a human lifetime in the Supervoid.
    On a personal note: The other day I was standing on the short end of a long lever and a bacterial cell jumped on top of the other end lifting me up. True story.

    • @JohnDixon
      @JohnDixon Před 6 lety +1

      But also if he was using a rocket ship to push the lever, the long arm wouldn't need to be as long because a higher force could be applied

    • @factsverse9957
      @factsverse9957 Před 5 lety +1

      The wood will break.

    • @priyankabhardwaj4590
      @priyankabhardwaj4590 Před 5 lety

      YtubeUserr

  • @sebastiangilbertoperezgamb7370

    1 existen diferentes tipos de palancas
    2 el juego que conocemos como sube y baja es una palanca muy eficiente

  • @yousefanber9916
    @yousefanber9916 Před 6 lety

    Very,good explination and very good video

  • @f-m
    @f-m Před 9 lety +3

    The amount of energy required to perform a task is always constant. Mechanical machines, such as lever, change the amount of force or displacement while product of the two (energy) is always constant (for ideal machines). This video needs correction at 1:17.

  • @JayKabin
    @JayKabin Před 4 lety +7

    listen to the music at the end at 1.25 times speed, kinda spoopy right?

  • @saintisraelmedi7686
    @saintisraelmedi7686 Před 6 lety

    Very helpful. You the best

  • @eduardoalejandrogarciagarc1704

    1. Toda palanca tiene tres componentes principales:
    I El brazo de potencia
    II El de resistencia
    III El punto de apoyo.
    2. La palanca esta equilibrada cuando, el producto de la fuerza de potencia y la longitud del brazo de potencia es igual al producto de la fuerza de resistencia y la longitud del brazo de resistencia
    3 Para que una persona de 68 kg pueda levantar un bloque de 2,5 toneladas necesitaría estar a 10 metros de distancia del punto de apoyo de nuestra palanca

  • @undercoverboss543
    @undercoverboss543 Před 6 lety

    I never knew you could go back like that and then you would go down

  • @dalsenov
    @dalsenov Před rokem +1

    This is highly valuable (the conservation of energy and subsequently of power) when you have to mount in need ,the spare wheel to your car. Usually you have a telescopic (expandable) wrench that increases the lenght of the lever, let's say twice.Thus you have to apply only half of the force needed to rotate the wheel screws. Work (mechanical energy) equals Force times distance (W=F*d).

  • @Dr.MalakDM
    @Dr.MalakDM Před 2 lety

    Thanks

  • @alexandruguja3139
    @alexandruguja3139 Před 9 lety +16

    2:11 - it should say : Torque , measured in Nm , is equal to the force applied over a perpendicular distance.
    The work done by these forces is acually zero, since the force and the direction are perpendicular.

    • @wurttmapper2200
      @wurttmapper2200 Před 6 lety +3

      The force that does no work is the centripetal one. Torque forces do work

    • @JohnDixon
      @JohnDixon Před 6 lety +3

      No, work is correct in this case, although torque would have been acceptable as well.
      The video is a bit unclear, but what it's trying to say is that when the lever's HORIZONTAL distance increases, you have to push it further in the VERTICAL direction to get the same rotational effect. Since the force applied is vertical (perpendicular to the lever), the total force decreases because the vertical distance it acts over increases.

    • @mdhuzaifa
      @mdhuzaifa Před 4 lety

      looks like you are an high school fresher

    • @xavierstanton8146
      @xavierstanton8146 Před 3 lety

      @@mdhuzaifa Don't you just love physics? How hard it is to explain?
      Sarcasm alert

  • @MikandLea
    @MikandLea Před 9 měsíci

    Thanks for the video, very helpful! :)

  • @noble9955
    @noble9955 Před rokem

    It is so amazing

  • @marinerblue2547
    @marinerblue2547 Před 6 lety +5

    wow....you are really scientist !

  • @project-pe6ly
    @project-pe6ly Před 9 lety +13

    How heavy would a person have to be to lever the earth if they are 'standing' on jupiter?

    • @Markus9705
      @Markus9705 Před 9 lety +19

      That depends on where you set the fulcrum.

    • @hishamsaadeh1717
      @hishamsaadeh1717 Před 4 lety

      If we are really talking about the earth in space, for a very small acceleration requirement (i.e. to lift the earth very slowly) you only need a very small force. The faster you wanna make the earth get to a certain speed the more force you need to apply. Since in space there is no gravity, then the force needed is mass of earth x the acceleration. You need to choose the fulcrum, then you can calculate the distance from the fulcrum based on this formula: Your distance from fulcrum = the distance of the earth from the fulcrum * Mass of the earth * acceleration you want to move the earth with / (the force you are applying).

    • @Daniel_Lopes_13
      @Daniel_Lopes_13 Před 3 lety

      however, with the same conditions, a person with 80kg would accelerate earth at 7.66*10^-19 m/s²

  • @infinityinf1
    @infinityinf1 Před 8 lety +9

    Did he mean torque instead of work? Work is force applied over a displacement where the force vector is parallel to the displacement vector and the units are in joules. Where as, torque is force applied over a radius where the force vector is perpendicular to the "radius vector" and the units are in N*m. I could be missing something, please feel free to correct me if I'm wrong.

    • @Javier-mc4pc
      @Javier-mc4pc Před 7 lety +2

      Infinity 1 man, im no english speaker so sorry if I make any gramatic error. But in the video they talk about work because we "can" see the movement of the machine as work, even thou torque has a lot more easy way to describe this phenomenom, work can be used as too, as we do the right conversions.

    • @JohnDixon
      @JohnDixon Před 6 lety

      No, work is correct in this case, although torque would have been acceptable as well.
      The video is a bit unclear, but what it's trying to say is that when the lever's HORIZONTAL distance increases, you have to push it further in the VERTICAL direction to get the same rotational effect. Since the force applied is vertical (perpendicular to the lever), the total force decreases because the vertical distance it acts over increases.

    • @13yroldgosu-gosu-sin24
      @13yroldgosu-gosu-sin24 Před 6 lety

      John Dixon While work is an applicable concept in this situation, I think torque actually makes more sense in this context, as the radius * force idea makes it much more understandable to why you must increase your radius in order to make up for a decrease in force, as you must have a net torque of zero to have no angular acceleration.

    • @John_C_J
      @John_C_J Před 6 lety

      You are right, I guess. But speaking of see-saws, gravitational force, work done and potential energy is more applicable and convenient. The moment you take it to outerspace, they become meaningless, torque should be used.

  • @shubhkhatwani70
    @shubhkhatwani70 Před 2 lety +1

    I am not even kidding, nobody on Earth was telling me why on Earth a simple machine can do this and lift such heavy things with so little force but Ted Ed came to the Rescue

    • @nemoniemand5001
      @nemoniemand5001 Před rokem

      And got it wrong. Sorry though, but they made a HUGE mistake in the explanation. "Basic devices that reduce the amount of energy required for a task" contradicts the energy conservation - the ONE LAW they should have explained correctly.

  • @jamlpe
    @jamlpe Před 11 měsíci

    i learned this back in grade 6 lol. these simple machines are crazyyy

  • @ArunKumar-mu6or
    @ArunKumar-mu6or Před 2 lety

    Great video sir

  • @dualtapestry1197
    @dualtapestry1197 Před 3 lety

    Let's go ..... We can now create extremely epic machines with the levers

  • @idicula1979
    @idicula1979 Před 4 lety +2

    Beauty and function, wonders meets science two as one melding together. Both become one as they never separated in first, the attract and repel in the illusion of it all.

  • @victordanielsolanojimenez8282

    3 aspectos que desconocía sobre el tema:
    1.- Desconocía el nombre adecuado de las partes de la palanca (brazo de potencia o fuerza, brazo de resistencia y punto de apoyo).
    2.- Desconocía la relación e importancia que existe entre el peso y la distancia al punto de apoyo de las máquinas simples para poder mover algo más grande.
    3.- Desconocía que el brazo de resistencia lo vamos a llamar al lado que queremos levantar (el objeto pesado y grande) y el brazo de potencia (fuerza) es el lado de nuestro peso o de donde vamos a ejercer la fuerza para levantar ese objeto.

  • @medic8038
    @medic8038 Před 2 lety

    You are amazing
    I got it 👍👍✅
    Thanks a bunch 🌸

  • @leslyevianeyvazquezdelgado2637

    1. el sube y baja es lo que llamamos maquina simple
    2.la palanca esta equilibrada cuando el producto de la fuerza y la longitud del brazo de potencia es igual al producto de la fuerza de resistencia y la longitud del brazo de resistencia
    3. el trabajo medido en Joules es igual a la fuerza aplicada por la distancia

  • @Daughter_Of_Bellona333
    @Daughter_Of_Bellona333 Před 3 měsíci +1

    Wait, but if there is no gravity, how would a lever work? Like If you can't apply weight to the lever, surely it just isn't possible? Please correct me if I'm wrong, because I am very confused myself.

  • @ChaosSamurai
    @ChaosSamurai Před 2 lety

    give me lever and a fulcrum to place it on and i shall move the earth.
    that's the rendition i always hear.

  • @omarmontana207
    @omarmontana207 Před 3 lety +1

    me pareció muy interesante, no sabia que:
    -La palanca se compone de brazo de potencia, resistencia y punto de apoyo.
    -si la fuerza de potencia es menor a la de resistencia basta con hacer palanca para lograr un punto de equilibrio
    -la palanca esta equilibrada cuando la fuerza de potencia y la longitud del brazo de potencia es igual al producto de la fuerza de la resistencia.

  • @danielribastandeitnik9550

    The explanation was going well, but it failed in the middle, but I could figure out why a lever works when he mentioned about work! What the lever does is that it allows you to do the same work you would do in lifting the weight, but with a trade-off: you do less force, but the distance you have to keep doing the force increases! So you have to lower the level a lot more to lift the heavy weight a little bit!

    • @xavierstanton8146
      @xavierstanton8146 Před 3 lety

      Work is force multiplied by distance given that it isn't being done at an angle. If it's being done at an angle, you need the cosine of the angle to calculate the work.

  • @globalalliancebusinessserv4250

    Amazing and very Engaging. Truly Inspirational.

  • @atharvpatil6032
    @atharvpatil6032 Před 4 lety +3

    We also need a strong material lever in order to lift earth

  • @mrbinspire
    @mrbinspire Před 3 lety +3

    This is phenomenal stuff thank you!! Great education right here. You can teach kids about leverage in finance using this example too. It can help them understand the concept of using leverage as buying power

  • @dwolf8594
    @dwolf8594 Před 9 lety

    Nice video love science keep it up!!!

  • @johnbland1585
    @johnbland1585 Před 3 lety +2

    An ancient Roman once said " give me a lever and I'll move a mountain" .

  • @antonygalvanlopez5811
    @antonygalvanlopez5811 Před 3 lety +1

    Es muy interesante, desconocia que la distancia o fuerza de potencia al punto de apoyo puede lograr levantar cualquier peso mayor (la resistencia) calculando las veces mayor de la resistencia hacia la fuerza de potencia.

  • @tapioca7115
    @tapioca7115 Před 3 lety +1

    Would discovering the phenomena of buoyancy have contributed to the development of a builder's level ?
    Is it true that Archimedes invented the auger ?
    Why is the weight / ballast oftenly overlooked when cataloging simple machines?

  • @shari-annrosenberg5777
    @shari-annrosenberg5777 Před 3 lety +5

    Me: IS THERE AN EARTHQUAKE OR SOMETHING?
    Parents: N E W S
    me: WHY IS THERE A BIG SEESAW IN SPACE LIFTING US?
    me: W H A T💀
    parents: 😭💀 *dying of laughter*

  • @luisfernandocorreacastillo4315

    sin duda desconocía la importancia entre la diferencia de peso y distancia en la que se basan estas "maquinas simples". el sistema de poleas por el que se basa el cuerpo es mucho más interesante tomando estos datos en cuenta.

  • @ryanr2205
    @ryanr2205 Před 8 lety

    thanks you

  • @Shimulnath96
    @Shimulnath96 Před 4 lety

    Nice animation

  • @wendymichellchaconzapata8294

    Un dato que yo no sabia y aparte que no sabia los nombres de la palanca o de los componentes principales que son el brazo de potencia, el de resistencia y el punto de apoyo.

  • @AUDIO2AUTO
    @AUDIO2AUTO Před 7 lety

    Its the natural phenomenons behind the mathematical principles that make the world go round.

  • @dianaavila9916
    @dianaavila9916 Před 7 měsíci

    Desconocía por completo que las palancas se componen del brazo de potencia, resistencia y punto de apoyo.
    Suena muy interesante que las palancas sirven mucho mas de lo que pensamos en nuestra vida cotidiana, ya que son muy útiles.
    También desconocía quien fue el que lo descubrió , el matemático Arquímedes.

  • @mirandayan8664
    @mirandayan8664 Před 3 měsíci

    Wow,this is so interesting even though I just came across this randomly😊

  • @user-ci2lg1lw5b
    @user-ci2lg1lw5b Před 3 lety +1

    지렛대에 숨어있는 강력한 수학에 대하여 알아보는 시간이 되었습니다. 힘의 규모와 받침점과의 거리간에 중요한 상관관계가 있다는 것 이것으로 힘을 손해보고 거리의 이득을 보든가, 힘을 이득보고 거리를 손해보는가 이것이 지렛대의 원리라는것을 배웠습니다. 이것이 너무 멋있는것 같습니다. 정말 재미있는것 같습니다. 좋은 시간이 되었습니다. 감사합니다. b*F=a*W 너무 간단하면서도 모든것을 말해줍니다. 너무 아름답습니다. 물리학도 정말 아름다운것 같습니다.

  • @ME0WMERE
    @ME0WMERE Před 4 lety +23

    ... and in the whole video, it didn't say that there are three types of lever.

    • @0weladon761
      @0weladon761 Před 3 lety

      Actually there are 4
      1: When
      2: Did
      3: I
      4: Ask?

    • @ME0WMERE
      @ME0WMERE Před 3 lety +1

      @@0weladon761 This video is about levers. I'd say that it PROBABLY should mention how many types there are. THIS IS RELEVANT TO THE VIDEO.

    • @elliechuanimates
      @elliechuanimates Před 3 lety

      @@ME0WMERE
      They at least explained the basics of the lever

    • @ME0WMERE
      @ME0WMERE Před 3 lety

      @@elliechuanimates Yes, and that is good, but I'd say how many levers it has is pretty important

    • @andrewmartin598
      @andrewmartin598 Před 3 lety

      @@ME0WMERE i think that would be a different video. Dont want to overcomplicate it. it would make this video less useful

  • @yessumify
    @yessumify Před měsícem

    I thought Archimedes was talking about moving the earth with a pulley, but must've remembered it wrong.

  • @tylerbritton38
    @tylerbritton38 Před 9 lety +14

    Wow that's cool

  • @maninderkaur6620
    @maninderkaur6620 Před 4 lety

    Much knowledgeable

  • @ZimmMr
    @ZimmMr Před 4 lety

    It would be great if you could explain pulleys too

  • @werofad
    @werofad Před 8 měsíci

    1.- Las palancas nos ayudan para facilitarnos el trabajo de levantar objetos pesados, se basa en principios de física.
    2.-una palanca se describe por tener dos brazos (potencia y resistencia) y un punto de apoyo, esta palanca produce trabajo cuando el producto emplea una fuerza de potencia mayor a la fuerza de resistencia y los brazos midiendo lo mismo
    3.- la relación entre el punto de apoyo, brazos y fuerza del producto, permite que podamos repartir el peso de algun objeto imposible de levantar a lo largo de la palanca y, si esta tiene un brazo de potencia mas grande se aplicará menor fuerza para levantar el brazo de resistencia