Cyclic Numbers - Numberphile

Sdílet
Vložit
  • čas přidán 26. 10. 2013
  • Numberphile is also on Facebook: / numberphile
    More links & stuff in full description below ↓↓↓
    142857 is the most "famous" of the intriguing cyclic numbers.
    Featuring Dr Tony Padilla from the University of Nottingham - / drtonypadilla
    NUMBERPHILE
    Website: www.numberphile.com/
    Numberphile on Facebook: / numberphile
    Numberphile tweets: / numberphile
    Subscribe: bit.ly/Numberphile_Sub
    Videos by Brady Haran
    Patreon: / numberphile
    Brady's videos subreddit: / bradyharan
    Brady's latest videos across all channels: www.bradyharanblog.com/
    Sign up for (occasional) emails: eepurl.com/YdjL9
    Numberphile T-Shirts: teespring.com/stores/numberphile
    Other merchandise: store.dftba.com/collections/n...
  • Věda a technologie

Komentáře • 885

  • @kookoon
    @kookoon Před 10 lety +92

    Memories of finding this weird number while playing with calculator. Thanks for this-

    • @PC_Simo
      @PC_Simo Před rokem +5

      Same here. Also; it’s kind of cool, how the blocks of 2 digits are multiples of 7 (and also 14, and they always double): 14 = 14 * 1 = 7 * 2; 28 = 14 * 2 = 7 * 4; 56 = 14 * 4 = 7 * 8; but, because the next one would be 112, which is a 3-digit-number; so, the leading 1 carries over to the block: ”56”, which then becomes ”57”; and the next one, after that, would be 224; so, once again, the lead 2 carries over, and the (1)12 becomes ”(1)14”. The next one, after that, would be 448; so, once again, the lead 4 carries over, and the (2)24 becomes ”(2)28”. That’s, why it repeats, as well. 😎

  • @allanrempel437
    @allanrempel437 Před 10 lety +19

    One thing to note is that it's always a cyclic permutation (as you might expect from the name) but it's a subset of permutations (which is the word he used in the video). Ex: 142857 -> 125748 is a permutation, but not a cyclic permutation. But general types of permutations never occur here, it's always cyclic; yet another amazing fact.

  • @smartjanssen1428
    @smartjanssen1428 Před 9 lety +188

    7:43 also 2 cyclists numbers outside the window

  • @Cuix
    @Cuix Před 10 lety +18

    His genuine excitement over this is honestly beautiful.

  • @kingofdogs49
    @kingofdogs49 Před 9 lety +271

    how many numbers are divisible by 7 in 1-10? 1
    how many numbers are divisible by 7 in 1-100?14
    how many numbers are divisible by 7 in 1-1000?142
    how many numbers are divisible by 7 in 1-1000?1428
    ... you get the picture :)

    • @frtard
      @frtard Před 9 lety +56

      kingofdogs49 The number of times any number (y) divides another (x) is, brace yourself, x/y without the remainder. I think you just blew every 1st grader's mind.

    • @knightriderultimate
      @knightriderultimate Před 9 lety +8

      I uh... think you were trying to point out that at every second step, the number is a multiple of 7? But the thing is, your conjecture fails at the very next iteration.

    • @General12th
      @General12th Před 8 lety +7

      frtard I thought it was neat...

    • @Nicheeee
      @Nicheeee Před 8 lety +9

      +kingofdogs49 Ahh I see. as you approach infinitey, you can say that "all" numbers are divisible by 7.

    • @Cream147player
      @Cream147player Před 8 lety +34

      +kingofdogs49
      1/2 = 0.5000000...
      how many numbers are divisible by 2 in 1-10? 5
      how many numbers are divisible by 2 in 1-100? 50
      how many numbers are divisible by 2 in 1-1000? 500
      how many numbers are divisible by 2 in 1-1000? 5000
      ... you get the picture :)
      1/3 = 0.33333333...
      how many numbers are divisible by 3 in 1-10? 3
      how many numbers are divisible by 3 in 1-100? 33
      how many numbers are divisible by 3 in 1-1000? 333
      how many numbers are divisible by 3 in 1-1000? 3333
      ... you get the picture :)
      Literally works for any number. Even decimals.

  • @JoshuaBarretto
    @JoshuaBarretto Před 7 lety +20

    I noticed this when I was 12 in physics class. I used to impress friends by using it to give the exact recursive value of any integer divided by 7 in my head.

    • @revenevan11
      @revenevan11 Před 4 lety +2

      That's a pretty cool use for it!

  • @rooples.pooples
    @rooples.pooples Před 7 lety +67

    This is like ASMR satisfying for the brain. Absolutely incredible.

  • @skyepyro7104
    @skyepyro7104 Před 8 lety +136

    Cyclists passing the window at 7:40 as they talk about cyclic numbers. Must be some kind of meta-cycle.

  • @haynerbass
    @haynerbass Před 10 lety +22

    Ahhh numbers. Like a spring breeze through my mind.

  • @numberphile
    @numberphile  Před 10 lety +33

    more coming

  • @Falcrist
    @Falcrist Před 10 lety +10

    Brady, may I make a suggestion?
    You should do a video (or series of videos) on Slide Rules. Not only are they a cool old method of doing calculations, they demonstrate LOTS of mathematical concepts.
    Logarithm properties, orders of magnitude, significant figures, etc etc
    These things all but disappeared back in the late 70's when electronic calculators became affordable. They're still readily available on ebay (even the huge demonstration models), but their use is becoming a lost art.

  • @KatzoCorp
    @KatzoCorp Před 10 lety +5

    I am fascinated to see people so enthusiastic about maths... I wish i had that kind of enthusiasm during high school :)

  • @siyaramkumar6337
    @siyaramkumar6337 Před 3 lety +4

    When I found it accidentally on my calculator , I thought I was gonna get a fields medal

  • @gabolugo
    @gabolugo Před 10 lety +28

    Ha! I remember reading about this number (142857) in the Man Who Counted by Malba Tahan when I was like 13 yo. I've been fascinated by it ever since and when I started watching numberphile I hoped for them to explain facts about it. I still sit idle sometimes with a calculator and play with it. Thanks for the video Brady!!

    • @helloiamenergyman
      @helloiamenergyman Před 4 lety +1

      man, I have EXACTLY the same story!
      I first read about it when I was 7

    • @glowstonelovepad9294
      @glowstonelovepad9294 Před 4 lety

    • @adarshmohapatra5058
      @adarshmohapatra5058 Před 2 lety +2

      I remember reading that pi is 22/7 in grade 5 or 6, then I found out that pi is irrational and that it means that the number doesn't end OR repeat. Then I sat down and decided it to calculate 22/7 by hand and found 3.142857142857... .
      I learnt later that pi is ACTUALLY 3.1415926... .
      That's when I found out about 142857.
      Also I feel lied to about pi NOT being 22/7. :/

    • @gabolugo
      @gabolugo Před 2 lety +1

      @@adarshmohapatra5058 that's actually something I didn't know, I guess it's a simple and fair approximation, thanks for sharing that 😁

  • @OfficialKruz
    @OfficialKruz Před 10 lety +3

    I haven't noticed all the other things about the cyclic numbers, but I noticed the perplexity of 1/7 long ago.
    I first saw that 14 was half of 28, so I kept going with that.
    I saw that 28 was almost half of 57, but realized that if I used 28.5714... and doubled it, I'd get, exactly, 57.1428...
    Found that all multiples of a permutation was just another permutation with the decimal moved.
    I'm glad this video was made though; now I know why.

  • @42scientist
    @42scientist Před 8 lety +86

    They all forget that 142857 squared = 20408122449. Which is composed by 20408 and 122449. BUT 20408 + 122449 = 142857. Illuminati confirmed ?

    • @TobiasRocks
      @TobiasRocks Před 5 lety +16

      142857 squared is the same as 142857 times 142857, so it's explained

    • @nicholasleclerc1583
      @nicholasleclerc1583 Před 5 lety +1

      We all thought that “Illuminati was confirmed” at the demonstration of the start of the video, then he explained it right after, so I don’t think it’s any different ; P

    • @walterrobinson9796
      @walterrobinson9796 Před 5 lety +1

      @Zachary Hunter numbers do not have to be rearranged when multiplying by a number that can be written as 7n+1 where n is an integer
      Notice 1×142857=142857

  • @outsideaglass
    @outsideaglass Před 10 lety +7

    This is such an awesome video! Cyclic numbers are so cool, thanks for teaching us about them!

  • @teleny2
    @teleny2 Před 4 lety +1

    I used to sing that number to the six-note repeating riff in Chicago's "Color my World".

  • @meissmart6678
    @meissmart6678 Před 10 lety +23

    Heyy that's my favorite number, 142857!

  • @glowstonelovepad9294
    @glowstonelovepad9294 Před 4 lety +4

    I'm a simple man.
    I see 142857, I click.

  • @stormgebieder1211
    @stormgebieder1211 Před 10 lety +2

    Of all your channels Brady, the people of Numberphile are by far the biggest enthousiasts :D

  • @bengski68
    @bengski68 Před 10 lety +2

    I used to remember the decimal for 1/7 = 0.142857 as "un-for-tu-nate fifty-seven". I suppose that applies here just as well.

  • @jamesli9563
    @jamesli9563 Před 10 lety +2

    Thank you for doing a video on my favorite number!!!

  • @KpxUrz5745
    @KpxUrz5745 Před 25 dny

    I've long been amazed by this number, and we thank you for delving into helping us understand more about it.

  • @MysteriousFireball13
    @MysteriousFireball13 Před 10 lety +1

    This is the first of your videos ive watched and im sorta a number/math fanatic and that was amazing it interested me so much and it was amazing how that works and how you explain it. Thanks!

  • @MuzikBike
    @MuzikBike Před 7 lety +8

    1/97 also displays a cyclic number. And it's also the powers of 3, until they encroach on each other and mess up.

    • @eriko807
      @eriko807 Před 7 lety

      Muzik Bike - Geometry Dash and stuff let me guess: you searched up cyclic or were on one of cyclic' videos and this was in the related list

    • @MuzikBike
      @MuzikBike Před 7 lety +1

      No actually, just boredom in maths class and noticing what the recurring digits of ⅐ were.

    • @aizenadante78
      @aizenadante78 Před 6 lety

  • @sivad1025
    @sivad1025 Před 7 lety +1

    This channel makes me so excited to take a number theory class

  • @numberphile
    @numberphile  Před 10 lety +4

    good to hear!

  • @marcusscience23
    @marcusscience23 Před rokem +1

    The reason the cyclic numbers have length (p-1) is because the digits correspond to all non-zero remainders of mod p, and by definition there are (p-1) of them.
    Also, n/p and (p-n)/p have digits shifted halfway from each other.

  • @fernandopizarrovillagarcia6992

    13 works a little different because its period is of 6 digits in stead of 12.
    The cyclic must be (10^6-1)/13, which is 076923.
    The multiplication works with 1,3,4,9,10,12 to give its permutation as a result.

  • @FromAnotherSide
    @FromAnotherSide Před 10 lety

    Those number sequences showing great properties are always so good-looking when represented on some sort of 'graph'

  • @jb76489
    @jb76489 Před 10 lety +26

    Surely 9 is the smallest cyclic number

    • @aizenadante78
      @aizenadante78 Před 6 lety +1

      Yes

    • @aizenadante78
      @aizenadante78 Před 6 lety +11

      9×2=18 1+8=9
      9×3=27 2+7=9
      9×4=36 3+6=9
      9×5=45 4+5=9
      9×6=54 5+4=9
      9×7=63 6+3=9
      9×8=72 7+2=9
      9×9=81 8+1=9
      9×10=90 9+0=9

    • @anirudhsilai5790
      @anirudhsilai5790 Před 5 lety

      Technically 3 would be

    • @elliottsampson1454
      @elliottsampson1454 Před 5 lety +6

      @@anirudhsilai5790 no 3×2=6 which is not 3.

    • @digitig
      @digitig Před 4 lety +3

      (10^1-1)/1, so it fits the pattern.

  • @panadudeTV
    @panadudeTV Před 10 lety +1

    Amazing, Brady!

  • @brandonthesteele
    @brandonthesteele Před 10 lety

    This was the episode I was waiting for since Numberphile started. Loooove 142857..

  • @BubbaYoga
    @BubbaYoga Před 10 lety +2

    I love this guy! He reminds me of Wallace and his, obvious, love for what he's doing makes me happy.

  • @chrisg3030
    @chrisg3030 Před 6 lety +2

    That "one more quirkiness" , 857^2 - 142^ 2 = 714285, got me hooked and inspired me to go on performing the same operation. 714^2 - 285^2 = yeah 428751. However 751^2 - 428^2 = 380817, and in fact I didn't get another permutation until I reached 560196 (the 30th such number I derived) on which 560^2 - 196^2 = 275184.
    (The rules are the square of the smaller 3 digit number is subtracted from that of the larger, and where the entire number consists of only 5 rather than 6 digits, such as 41769, it splits 2 on the left and 3 on the right, or as if it begins with a 0, so we then do 769^2 - 041^2)
    Carrying on after that I got to 115479 at number 34. 115^2 - 479^2 = 216216, so that's where I had to stop. Phew.
    Explanations welcome.

    • @chrisg3030
      @chrisg3030 Před 4 lety

      Matthew Schellenberg What about 587412? (Btw: I made a slip up in my comment above. 714^2 - 285^2 = 428571, not 428751. No wonder I went off on that wild goose chase. Then 571^2 - 428^2 = 142857 again)

  • @DANGJOS
    @DANGJOS Před 10 lety

    I've been waiting for them to make a video about this for the longest time! Finally, a video about the wonders f the number 7

  • @sk8rdman
    @sk8rdman Před 10 lety +1

    You're right about those infinities being of equal cardinality.
    If you could randomly select one of all primes, then there's ~37% chance that it will be a cyclic number.
    I'm simply saying that it's possible to find a ratio of numbers in a sequence when there is the right kind of pattern, even if that pattern is infinite.

  • @fugi4943
    @fugi4943 Před rokem

    Absolutely incredible

  • @milliams
    @milliams Před 10 lety +28

    Is the percentage of primes which are cyclic the same for all bases or is there some calculable relationship?

    • @coopergates9680
      @coopergates9680 Před 8 lety +9

      +Matt Williams Even square bases have no cyclic primes. Odd square bases only have the cyclic prime 2. For bases that are not perfect powers, the 37.395% might hold.

  • @NickiRusin
    @NickiRusin Před 10 lety

    I read about this like 10 years ago, this started my love for math. It's awesome.

  • @Ajoscram
    @Ajoscram Před 10 lety +1

    I kept thinking throughout the video: "Is there a formula to create these numbers?" and then there it was. Its really cool to see the reasoning behind it :D

  • @illninjaphil
    @illninjaphil Před 6 lety +1

    A very similar system, "Vortex Math" uses the same set up of the 9 digits around a circle, but the core idea in that system is to regular math but then always reduce everything back to the digital roots.... There are TONS of beautiful patterns and neat little tricks that can be found with it.
    If you start at 1 and just keep doubling it goes: 1-2-4-8-7-5-~ (1 - 2 - 4 - 8 - 1+6 - 3+2 - 6+4, 1+2+8 = 1, and the pattern repeats forever. There's those same numbers again!
    If you take the digit digital root of all the multiplication tables you end up with sets that mirror each other (as they also mirror each other across the a vertical line of symmetry, where the 9 sits... take your 2s and 7s tables: 2-4-6-8-1-3-5-7-9 is the reverse of 7-5-3-1-8-6-4-2-9. The 1-8, 3-6, 4-5, tables are all mirrors of each other. It's pretty neat. There's tons more to it!

  • @space-time.7767
    @space-time.7767 Před 2 lety

    Hi numberphile, thanks for answering this question

  • @Mattquatch1
    @Mattquatch1 Před 2 lety +2

    Thanks Sho.

  • @ALoonwolf
    @ALoonwolf Před 6 lety +1

    I did some messing around with this number, discovered the number was generated from two digit doubling of 7, with a third digit etc. overlapping.... 7 14 28 56 (+1)12 (+2)24 (+4)48 (+8)96 etc. becomes 7 14 28 57 14 28 56 (+1 carried over from the next doubling to make 57 again).... If you keep doubling 7 but only displaying 2 digits, with the hundreds and thousands and ten thousands, etc. overlapping the previous numbers it reads 714285 repeating to infinity (presumably).

  • @Fluxsen
    @Fluxsen Před 10 lety +6

    8:53
    describes math pretty damn nicely

  • @lucaslabruyere6794
    @lucaslabruyere6794 Před 10 lety

    I have absolutely no understanding of this....just love to listen to someone talk about something they are passionate about

  • @davidalearmonth
    @davidalearmonth Před 10 lety +1

    I always liked the decimal expansion of 1/7 , because of all the multiples of 7 that appear in it: 14, 28, 56, 112 , 224 , 448 , 896 , 1792. Basically, each time, the digits just carry over, so you get your: 0.142857142857... i.e. 56+1 = 57 , 12+2 = 14, 24+4 = 28, 48+8+1 = 57 (from the 96+17+1 is the extra 1 carry over), etc. It was a neat property.

  • @Helvanic
    @Helvanic Před 10 lety

    FINALLY a video on 142857 ! I love this number!

  • @Falcrist
    @Falcrist Před 10 lety +1

    Seen it like 3 times. In fact, that's the reason I chose to get a couple slide rules for myself (they can be had for as little as $15).
    I'd still like to see a series of videos about slide rules from numberphile, possibly with Dr. Grimes himself.

  • @FransJSuper
    @FransJSuper Před rokem

    And next to it being cyclic it appears that the decimals of 1 to 6 divided by 7 represent some tweaked table of multiples of 7-with-a-little-extra: 0,7(142857...); 0,14(285714...); 0, 28(571428...); 0,42(857142...); 0,56 (+0,01142...=0,57142857); 0,85(714285...). That's why I love 7. It comes handy when you're trying to do some estimates and calculate just a little faster than others around you.

  • @juST_LuKe-fw1ck
    @juST_LuKe-fw1ck Před 10 dny

    I love how I always find this when dividing by 7

  • @nakamakai5553
    @nakamakai5553 Před 6 lety

    OMG. I've been using this number for years, and didn't know 10 percent of these properties!! Well done lads.

  • @strattaravar
    @strattaravar Před 10 lety +1

    Same as with the law of large numbers. Over infinity samples of some test, you can still derive some percentage of those infinity numbers that are technically successful. Infinity is a limit, not a number.

  • @applessuace
    @applessuace Před 10 lety

    Good question. We can say that a number is cyclic if each cyclic permutation of the number is an integer multiple of the number.
    Since we know that 142857 is a permutation of 428571, and it is not an integer multiple of 428571, it is not cyclic. You may notice then, that another corollarial property is that the first digit in the number has to be the smallest that occurs in the number.
    However, since 428571 * n = 142857 * 3 * n, 428571 will exhibit some similar properties sometimes.

  • @AlexBradleyPopovich
    @AlexBradleyPopovich Před 10 lety +14

    I think this is actually an advertisement for Sharpies and brown paper… xD

  • @kght222
    @kght222 Před 10 lety

    your logic is impeccable, i can't believe i didn't see it.

  • @gurmeet0108
    @gurmeet0108 Před 9 lety +9

    Numberphile Hey hi, I think you messed up the arrows at 3:23, it's a cyclic number but your arrows are showing a permutation not a cycle (though, of course, there is a cycle, its just your arrows are not showing that cycle)

    • @FanxB
      @FanxB Před 8 lety +1

      Gurmeet Singh I noticed that too.
      It's like they've missed the whole point; that the digits are in sequence.
      Still, 5/7 marks for trying

    • @sergiokorochinsky49
      @sergiokorochinsky49 Před 8 lety

      jaaa... it´s an inocent mistake, but since that´s the whole idea of the video, I believe it is worth to fix it...

  • @AlexTheUruguayan
    @AlexTheUruguayan Před 10 lety

    Fascinating stuff.

  • @bigmike714
    @bigmike714 Před 10 lety

    142857 had always been my favorite number. So it's cool they made this video

  • @krokkoguy
    @krokkoguy Před 10 lety

    There is another little quirk about the number. You can see that the first two digits are 14 (7*2), the second pair is 28 (7*4). But the next number really 56 (7*8) however it is written 57 because the next number is 112 (7*16) and the 1 overlaps into the 6 in 56. the next number again is 224, which again, overlaps the 2 into the last number of the previous pair. It continues like this.

  • @RussianZoomer
    @RussianZoomer Před 10 lety

    Love this stuff

  • @thebig281ify
    @thebig281ify Před 10 lety

    That is truly amazing

  • @nineonethirtyseven9816
    @nineonethirtyseven9816 Před 9 lety +1

    You did not mention the prime number 137. 1/137 produces a cyclic number of only 8 numbers. 00729927. In fact when you add any of the numbers in a cyclic set, it always equals nine.

  • @MrBravomam
    @MrBravomam Před 10 lety

    I notice the dash through 7 in hand-writing, where a tilted 1 might look like a 7. Sometimes there is a line under 1 (like it is standing on a platform). It is just another way to make it perfectly clear to others what you are writing.

  • @ZeZapatiste
    @ZeZapatiste Před 10 lety

    I found most of these properties a day I was bored in a history class. I have to admit I had a thing for dividing numbers by 7 at the time. There was really something special.

  • @Roxfox
    @Roxfox Před 10 lety

    Memorizing this number became easy when I noticed that pressing 857 on a calculator is the same pattern as pressing 142, except upside down. And the two patterns slot neatly into a nice little block that makes my Tetris OCD happy.

  • @wcbuerste7
    @wcbuerste7 Před 10 lety

    Anytime ;)
    Thanks for producing!

  • @DynoosHD
    @DynoosHD Před 10 lety

    this is amazing. with this you can show, witch number can divided by 7 and witch dont

  • @sanjayastenly9438
    @sanjayastenly9438 Před 10 lety

    omg.. this is too mindblow!!!

  • @kellamyoshikage286
    @kellamyoshikage286 Před 10 lety

    I just now realized how that worked... it is 1/7th less than exactly 1000000, meaning multiplication will always give similar permutations. I discovered that a while ago, but never put 2 and 2 together.

  • @eyesofphysics97
    @eyesofphysics97 Před 10 lety

    We need more of Tony Padilla! And the other classics, such as Grime, Matt Parker, etc.

  • @modenoatr
    @modenoatr Před 5 lety

    Cyclic numbers aren't just permutations of their individual digits, you can go from one to the other by cutting the first one in two blocks and switching them, simple as that.
    For instance, at 3:22, you seem to have missed this by switching around the arrows leading to identical digits.

  • @nov51947
    @nov51947 Před 10 lety

    I'm just too old!! I immediately recognized the opening number as 1/7. Fascinating anyway!

  • @luiscarlosqg
    @luiscarlosqg Před 10 lety

    Soooo, amazing!

  • @rogerdotlee
    @rogerdotlee Před 10 lety

    Dr. Padilla broke my brain. Somehow he made it all make sense.
    I'll have to sleep on this.

  • @NowhereManForever
    @NowhereManForever Před 10 lety +1

    It has been decided that zero is even. This is due to a number of reasons- mainly that if it wasn't even, there would be lots of problems with many theorems and that zero actually has all the properties of an even number. The definition of an even number is that it can be divided by 2 and leave no remainder. Divide 0 by 2 and you still get zero, but no remainder. Thus, 0 is even,

  • @numberphile
    @numberphile  Před 10 lety +3

    thanks for watching

  • @sk8rdman
    @sk8rdman Před 10 lety

    The way we notate numbers can be done in different bases. The standard is base 10 (or decimal), because we count 10 numbers before we increase the value of the next digit. If we were to count in a different base, say base 8, we would count 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21; which translated to decimal are the numbers 0-17.
    Different bases are used for different things. For example: computers work because of their ability to process and store information in binary.

  • @moepet1
    @moepet1 Před 10 lety

    Yay! old fashioned brown paper vid! keep them coming :)

  • @tunateun
    @tunateun Před 10 lety +1

    love this vid! also rip lou reed

  • @dushyanthabandarapalipana5492

    Thanks!

  • @someknave
    @someknave Před 10 lety

    You are mostly correct. Infinity is a dangerous thing to say anything about though as in some contexts it can be treated as a number. There are also higher orders of infinity that are not countable so cannot be approached by adding or multiplying or by raising to a finite power, but only by taking the powerset. (ie. x-> 2^x)

  • @phtown
    @phtown Před 10 lety

    Wow. Well, done.

  • @mohammadakash1014
    @mohammadakash1014 Před 4 lety

    thank you very much sir

  • @modenoatr
    @modenoatr Před 5 lety

    Another interesting thing is that a lot of other prime numbers (not 2, 5, or 11 for example, because we're working in base 10), instead of being associated with cyclic numbers of length p-1, are instead associated with groups of pseudo-cyclic numbers of total length p-1. For instance, 13 is associated with 076923 and 153846.

  • @DiaStarvy
    @DiaStarvy Před 10 lety

    Let r be the repeating section of 1/p for any prime p (so for p = 7, r = 142857). You can cycle the digits of r to the left by n by calculating r * (10^n mod p). For example, to cycle 142857 to the left by 1, calculate:
    142857 * (10^1 mod 7)
    = 142857 * 3
    = 428571.
    7 produces a cyclic number because all the natural numbers less than 7 can be expressed as 10^n mod 7. Starting at n = 0 and increasing, 10^n mod 7 starts as "1, 3, 2, 6, 4, 5" and repeats.

  • @liweidai4474
    @liweidai4474 Před 10 lety

    That's amazing.

  • @ajflink
    @ajflink Před 10 měsíci +1

    I found out about this via Neo: The World Ends With You. There is one character who commonly speaks with mathematical terminology.

  • @willfeav
    @willfeav Před 10 lety

    My mistake, you're right about the cycles/perms mix up, but yeah you got my point that the animations could have shown the cyclic nature

  • @LeoMRogers
    @LeoMRogers Před 10 lety

    Because the permutations of 142857 do not contain 0, if the longer number wasn't written with a leading 0, it wouldn't be cyclic, because when you do the operation described in the video, the resultant numbers contain a 0 somewhere in them.

  • @PikalaxALT
    @PikalaxALT Před 10 lety

    Take any number that is not divisible by 2 or 5. The decimal expansion of its reciprocal is purely periodic. Take the period of the decimal expansion. Hypothesis: The length of the period of 1/N is exactly the order of 10 mod N, and the number of distinct periods that come from the expansion of a/N, for 0 < a < N such that (a,N) = 1, is exactly the index of the subgroup generated by 10 in Z/(N).

    • @ffggddss
      @ffggddss Před 6 lety

      Say, N = 11. Then period, P(N) = 2. But 10 mod 11 = 10. So I think you're saying (order of 10) in (Z mod N), which is 2, because 10² ≡ 1 mod 11. Same will work, e.g., for N = 33.
      For N = 77, P(N) = 6; and 10⁶ ≡ 1 mod 77, and this isn't true of any smaller power of 10.
      I think your hypothesis is easily true, because P(N) is the smallest positive integer, k, for which N | (10ᵏ-1); i.e., the smallest k, s.t. 10ᵏ ≡ 1 mod N,
      which is the order of 10 in (Z mod N).
      This becomes obvious when performing a long division. Repetition will always begin when, and only when, the current remainder is 1.
      Fred

  • @ol1ver49
    @ol1ver49 Před 4 lety

    Another fweature not mentioned is that the number 0.142857 recurring is the sum of an infinite series. - 14/10 squared plus 28 over 10^4 plus 56/10^6 etc so sum from n to infinity of 14n/10^(2n) . This also applies to the 1/17 recurring decimal (which is hard to see, based on 1/588) but is visible in the 1/19 decimal - 0.052631578947368421 recurring - based on 5 getting squared, and easy to see in the 1/49 recurring (yes, not a prime) - 020408163265306122448979591836734693877551.

  • @ForestSongUnLTD
    @ForestSongUnLTD Před 10 lety

    WOOT! you listened! You guys rock. :)

  • @DiaStarvy
    @DiaStarvy Před 10 lety

    What you described are called cycles, which are permutations, but not all permutations are cycles. Permutations can be any rearrangement at all, even without preserving order. You are right though, the animations don't show what's happening entirely.

  • @ThePeaceableKingdom
    @ThePeaceableKingdom Před 10 lety +1

    1. This is why the Pythagoreans called 7, "the virgin," because she wouldn't interact with the other numbers and always remained herself.
    2. It's hard to escape the feeling that there is something very significant in such number properties that are very trivial, isn't there?
    3. Thanks for mentioning other bases. I often wonder which properties of our felt schemata of numbers are innate and which are simply due to our conventions and nomenclature...

  • @Coldo3895
    @Coldo3895 Před 10 lety

    Awesome !

  • @bitzibaerlie
    @bitzibaerlie Před 10 lety

    My time of birth is 14:28 (and I like to believe 57 seconds :P ). Waited for this video since I started watching Numberphile. Thanks, Brady. I love Your channel.

  • @zaidxii
    @zaidxii Před 10 lety

    You sir deserve a cookie