Can You Solve The 4 Hats Logic Puzzle?

Sdílet
Vložit
  • čas přidán 18. 10. 2023
  • Four friends claim they have been wrongly imprisoned. They are not criminals but mere harmless logicians! The warden says, "If you are in fact logicians I will set you free. But first you have to prove it to me." Can they work it out?
    I have seen this puzzle shared in many places. I based my graphic on a widely circulated graphic but I have been unable to determine the original source-if you know it please let me know. The links below are examples of how the puzzle has been shared.
    puzzling.stackexchange.com/qu...
    puzzling.stackexchange.com/qu...
    Subscribe: czcams.com/users/MindYour...
    Send me suggestions by email (address at end of many videos). I may not reply but I do consider all ideas!
    If you purchase through these links, I may be compensated for purchases made on Amazon. As an Amazon Associate I earn from qualifying purchases. This does not affect the price you pay.
    If you purchase through these links, I may be compensated for purchases made on Amazon. As an Amazon Associate I earn from qualifying purchases. This does not affect the price you pay.
    Book ratings are from January 2023.
    My Books (worldwide links)
    mindyourdecisions.com/blog/my...
    My Books (US links)
    Mind Your Decisions: Five Book Compilation
    amzn.to/2pbJ4wR
    A collection of 5 books:
    "The Joy of Game Theory" rated 4.3/5 stars on 290 reviews
    amzn.to/1uQvA20
    "The Irrationality Illusion: How To Make Smart Decisions And Overcome Bias" rated 4.1/5 stars on 33 reviews
    amzn.to/1o3FaAg
    "40 Paradoxes in Logic, Probability, and Game Theory" rated 4.2/5 stars on 54 reviews
    amzn.to/1LOCI4U
    "The Best Mental Math Tricks" rated 4.3/5 stars on 116 reviews
    amzn.to/18maAdo
    "Multiply Numbers By Drawing Lines" rated 4.4/5 stars on 37 reviews
    amzn.to/XRm7M4
    Mind Your Puzzles: Collection Of Volumes 1 To 3
    amzn.to/2mMdrJr
    A collection of 3 books:
    "Math Puzzles Volume 1" rated 4.4/5 stars on 112 reviews
    amzn.to/1GhUUSH
    "Math Puzzles Volume 2" rated 4.2/5 stars on 33 reviews
    amzn.to/1NKbyCs
    "Math Puzzles Volume 3" rated 4.2/5 stars on 29 reviews
    amzn.to/1NKbGlp
    2017 Shorty Awards Nominee. Mind Your Decisions was nominated in the STEM category (Science, Technology, Engineering, and Math) along with eventual winner Bill Nye; finalists Adam Savage, Dr. Sandra Lee, Simone Giertz, Tim Peake, Unbox Therapy; and other nominees Elon Musk, Gizmoslip, Hope Jahren, Life Noggin, and Nerdwriter.
    My Blog
    mindyourdecisions.com/blog/
    Twitter
    / preshtalwalkar
    Instagram
    / preshtalwalkar
    Merch
    teespring.com/stores/mind-you...
    Patreon
    / mindyourdecisions
    Press
    mindyourdecisions.com/blog/press
  • Věda a technologie

Komentáře • 1K

  • @londonbobby
    @londonbobby Před 7 měsíci +5454

    If Logician 1 sees two hats the same colour then he knows his hat is the opposite colour and speaks out. After a while of not speaking out Logician 2 realises that 1 must be looking at two different colours and therefore his hat is the opposite colour to the one in front of him and he speaks out. Basically it's the same, but without the need for the logic table.

    • @PauIdenino
      @PauIdenino Před 7 měsíci +546

      Yea the table just made things more complicates

    • @dffrnttd9474
      @dffrnttd9474 Před 7 měsíci +254

      Agreed, no need to work through all permutations.

    • @ianmalcolm2552
      @ianmalcolm2552 Před 7 měsíci +262

      Absolutely; this was very easy to figure out without complicating the problem with all the possibilities. Once #1 doesn’t immediately answer, #2 knows his hat is not the same as #3.

    • @Dexaan
      @Dexaan Před 7 měsíci +88

      This is how I solved it too.

    • @kavyagupta75768
      @kavyagupta75768 Před 7 měsíci +29

      In seconds nice thinking 👍

  • @ongbonga9025
    @ongbonga9025 Před 7 měsíci +651

    Number 1 isn't confused, he's a perfect logician, he's impatiently waiting for 2 to hurry up and get the message.

    • @Zykked
      @Zykked Před 6 měsíci +5

      Top comment

    • @shiinondogewalker2809
      @shiinondogewalker2809 Před 4 měsíci +6

      number 2 never got the message. He's trained in logic alone, and ends up never knowing if number 1 doens't answer because he didn't figure it out, doesn't want to, or any other reason

    • @larrydene6379
      @larrydene6379 Před 4 měsíci +1

      But the weren't supposed to talk to each other.

    • @3Looy
      @3Looy Před 4 měsíci +3

      @@larrydene6379they didnt talk

    • @h4rder10
      @h4rder10 Před 4 měsíci

      they're friends and in jail. 2 knows 1 is trying.@@shiinondogewalker2809

  • @matthewmitchell3457
    @matthewmitchell3457 Před 7 měsíci +1567

    Three logicians walk into a bar. The bartender asks them "Would you three like something to drink?" The first logician says "All three of us? I don't know." The second logician says "I don't know either." The third says "Yes, we would."

    • @Blade.5786
      @Blade.5786 Před 7 měsíci +129

      The version I read went:
      "Can I get you all a beer?"
      "I don't know"
      "I don't know"
      "Yes"
      I prefer it more than yours tbh, less obvious

    • @SH0907
      @SH0907 Před 7 měsíci +100

      ​@@Blade.5786nah, your Version is worded badly. There is no way for them to logically deduce whether he *can* get them a beer. Might be considered nitpicking but seems like a relevant distinction in a logic joke which is mainly based around wording. This would be a better way to phrase it:
      Do you all want a beer?
      Idk
      Idk
      Yes

    • @antijokecommenter5003
      @antijokecommenter5003 Před 7 měsíci +3

      i wont get it

    • @Blade.5786
      @Blade.5786 Před 7 měsíci +10

      @@SH0907 Actually there is, the logical deduction would be that he can (considering the fact that he's the bartender). Using logic even further, this is information the bartender himself is aware of, and therefore wouldn't be asking if he wasn't implying something else (whether they *wanted* a beer). Logic is ingrained in our everyday speech, so it's not exactly wrong to use it in a logic joke.

    • @jakemccoy
      @jakemccoy Před 7 měsíci +90

      @@antijokecommenter5003
      1's answer indicates 1 wants a beer but does not know about 2 and 3.
      2 and 3 then know 1 wants a beer.
      2's answer indicates 2 wants a beer but still does not know about 3.
      3 then knows 1 and 2 want a beer.
      Since 3 wants a beer, 3 now knows all want a beer.

  • @dale3478
    @dale3478 Před 7 měsíci +602

    You don't really need to enumerate all 6 possibilities in this case. If the 2nd and 3rd person wears the same color, then the 1st person can immediately answer. If they wear different color, then the 1st will stay silent. And that silence becomes information to the 2nd person, who knows the color of the 3rd and, hence, also knows his. I think this concept is called common knowledge

    • @garys5175
      @garys5175 Před 7 měsíci +14

      That is my thinking also.

    • @smilerbob
      @smilerbob Před 7 měsíci +8

      This is how I worked it out as well 👍

    • @AndresQ
      @AndresQ Před 7 měsíci +6

      came here to write this as well

    • @user-rh7gw2zd6n
      @user-rh7gw2zd6n Před 7 měsíci +11

      Even more - after the second man claim his hat, third one can do it as well

    • @huzefa6421
      @huzefa6421 Před 7 měsíci +1

      exactly

  • @IoEstasCedonta
    @IoEstasCedonta Před 7 měsíci +581

    ...I feel like you've made this more complicated than it had to be.

    • @Nako3
      @Nako3 Před 6 měsíci +30

      Video had to be long enough to be monetized

    • @randomgamer-te8op
      @randomgamer-te8op Před 6 měsíci +15

      @@Nako3 isnt it min 8 minutes for monetization tho

    • @Nako3
      @Nako3 Před 6 měsíci +3

      @@randomgamer-te8op Im not sure

    • @einfachnurmetin
      @einfachnurmetin Před 6 měsíci +22

      ​@@Nako3then why are writting such a bs?!

    • @thewhatever993
      @thewhatever993 Před 5 měsíci +1

      complicated? how???

  • @katiekawaii
    @katiekawaii Před 7 měsíci +307

    It could be expressed more simply. If #1 sees two of the same color hat, he says he has the other one. If #1 says nothing, then #2 knows he and the guy in front of him have different color hats, so he says the opposite of whatever color he sees on the guy in front of him.

    • @amourzombie
      @amourzombie Před 7 měsíci +41

      Unfortunately not long enough an explanation to make this video profitable

    • @mattwatson7510
      @mattwatson7510 Před 6 měsíci +4

      Still not 100% sure. Number one could be bad at his job.

    • @alexaar4951
      @alexaar4951 Před 6 měsíci +1

      yes this also works!! there are so many other possibilities to solve this puzzle.

    • @BowieZ
      @BowieZ Před 5 měsíci

      Part of the rules of the puzzle is that all four people are PERFECT logicians.@@mattwatson7510

    • @x_mau9355
      @x_mau9355 Před 5 měsíci

      Absolutely. The author again is supposedly making all three friends equally capable, with the same skills.. that's not true.

  • @mytube001
    @mytube001 Před 7 měsíci +75

    I misheard the rules. I thought all four had to state the color of their own hat for them to be set free, and I just couldn't see that happening.

    • @Yusso
      @Yusso Před 7 měsíci +18

      Same. In that case only 2 and 3 would know their color.

    • @melodicseaweed387
      @melodicseaweed387 Před 7 měsíci +2

      me too

    • @BlurbFish
      @BlurbFish Před 7 měsíci +14

      That would've been a far more interesting puzzle.
      In the case of 2&3 having same colour A, 1 will shout colour B. 2 can then conclude he is wearing colour A (because 1 sees two same hats). 3 can conclude he is wearing colour A on same premise. 4 knows he's wearing colour B by process of elimination.
      In the case of 2&3 having different colours (A&B, respectively), 1 will stay quiet and 2 will conclude he is wearing A. 1 still doesn't know if he's A or B, and stays quiet. 3 can now conclude this is a "different colour scenario", and knows he is B (opposite of 2). I see no way for 1&4 to figure out what they're wearing from here.

    • @mytube001
      @mytube001 Před 7 měsíci +2

      @@BlurbFish Yep, they'd have a 50/50 chance, which is what they all start with anyway...

    • @AlecBrady
      @AlecBrady Před 7 měsíci +10

      Once 2 has spoken, 3 knows their hat is red (if it had been the same as 2, 1 would have spoken first; so, knowing now that 2 is blue, 3 knows theirs must be the opposite). But here's where it stalls - no-one can see either 1's or 4's hat. They all know they're opposites, but not which way round they are. It could be resolved if 3 were allowed to turn round when they'd got their answer, but that's kinda kludgy. It would be nice if we could find a way for 4 to be the one that resolves it - say, if they can see 1's and only 1's hat.
      Anyway. Three logicians walk into a bar, and the server says "three beers, is it?" The first logician says "I don't know", and the second logician says "I don't know", and the third logician says "yes, please".

  • @spicemasterii6775
    @spicemasterii6775 Před 7 měsíci +280

    The warden is the real true logician.

    • @QuarkTwain
      @QuarkTwain Před 7 měsíci +34

      Not so! The warden missed the possibility that the four prisoners are criminal logicians.

    • @pauldzim
      @pauldzim Před 7 měsíci +10

      No! The logicians had a 50/50 chance of going free even if they just guessed. That's terrible wardening.

    • @Simqer
      @Simqer Před 7 měsíci +2

      ​@@pauldzim actually, the chance is 2/3. because the second guy knows the guy in front has red, so there are 2 blue and 1 red left. And if you compound the fact that the chance of the 4 prisoners being logicians is > 0, it means that the chance that the prisoners would go free is actually more than 2/3

    • @mynthics
      @mynthics Před 5 měsíci

      @@Simqerthe chance is in fact 1/2, as the first person can see 1 red and 1 blue hat which means there’s a 50/50 chance for person 1 to get correct

    • @Simqer
      @Simqer Před 5 měsíci

      @@mynthics no, I am not talking about the chance for the left guy, I am talking about the overall chance for everyone to guess correctly. Nr 2 and 3 are a given, so 2 people will already have passed. The 50/50 is for the remaining 2

  • @kayr6688
    @kayr6688 Před 4 měsíci +42

    You made this so much more convoluted than it needed to be

  • @Wou_
    @Wou_ Před 7 měsíci +201

    That was... an unnecessarily long explanation. As other people pointed out, if they know there are 2 red hats and 2 blue hats (which is the case according to the sources in description), logician 1 will have to remain silent, as seeing different hat colors on 2 and 3 means he could have either color. Then logician 2 notices 1's silence, and thinks, "If 3 and I had the same color, 1 would immediately know his own hat color. As this was not the case, 3 and I have different hat colors, meaning that since 3 has a red hat, my own hat is blue".

    • @andrevanderkant6616
      @andrevanderkant6616 Před 7 měsíci +4

      Same reasoning. Glad I do not have to write all that !

    • @RealRamaladni
      @RealRamaladni Před 7 měsíci +1

      i think it's not the first time he presents this puzzle either.

    • @maxastro
      @maxastro Před 7 měsíci +5

      For bonus points, by the same logic 3 immediately knows his own hat color as soon as 2 calls out.
      I don't think there's any way for 1 or 4 to know their own color, though.

    • @EClein2
      @EClein2 Před 7 měsíci

      One more of them could know, as at some point either 1 or 4 would have to guess their hat colour and right/wrong this would inform the other person.

    • @QwertyUiop-ct9dr
      @QwertyUiop-ct9dr Před 7 měsíci

      im not sure how 3 would know their colour, as 3 can only figure out his hat is different colour to 2 but 3 cant see 2 to know the exact colour

  • @OnlyPenguian
    @OnlyPenguian Před 6 měsíci +22

    Let's assume that "they are not allowed to talk to each other" means that they can't communicate to each other at all. Then the only way that #2 would know that #1 was uncertain was via the fact that the warden has not already set everyone free. The problem is therefore better posed if there are time constraints.

    • @kylenetherwood8734
      @kylenetherwood8734 Před 5 měsíci +1

      I think they'd notice being set free

    • @ashleybroughton7713
      @ashleybroughton7713 Před 4 měsíci +3

      This is what I thought if they can't talk to each other then how are they able to communicate halfway through??

    • @anthonythomas
      @anthonythomas Před 4 měsíci +4

      @@ashleybroughton7713 Even if they couldn't hear each other answer, Logician 2 would still realize they haven't been set free after a few seconds and then figure out what's going on.
      Even if that weren't the case, there's a second solution here. The logicians were given the information that the Warden specifically set up this scenario to test if they were logicians and not criminals. For this scenario to even be a logic puzzle, logicians 2 and 3 have to have different colored hats since any criminal in the 1 spot could figure out his hat color if he sees two of the same colored hats in front of him. With that information alone, Logician 2 should be able to instantly say he has a blue hat, even if he never gets any information from Logician 1.

    • @lewis72
      @lewis72 Před 4 měsíci +3

      "Let's assume that "they are not allowed to talk to each other" means that they can't communicate to each other at all."
      - My point exactly.
      Many of these logical problems seem to rely on ignoring the initial conditions, not actually working out the logic.

  • @markburgin3424
    @markburgin3424 Před 7 měsíci +7

    What a convoluted way to explain a simple solution.

  • @mr.l6332
    @mr.l6332 Před 7 měsíci +10

    I think firmly stating that they can't communicate in any way was a little confusing here. If we had clarified that there are clock ticks, and on each tick a logician can answer (and all other logicians take note of when no-one else answers), then it would've made it more clear that the passage of time could be used to communicate whether a logician does/doesn't know the answer. It's a pattern used in other hat style logic puzzles so it's not too far out of reach to imagine, but it's worth clarifying.
    e.g.: the blue-eyed people on an island logic puzzle uses the concept of "days" to let the puzzler understand that the passage of time is divided into distinct rounds, which can tell agents at which point other agents were uncertain of the answer.

    • @MoonDystopia
      @MoonDystopia Před 7 měsíci +1

      Exactly. I don't need the fluff story. Just clearly state the rules. I had to look it up somewhere else to understand that they get turns to answer or decline and it immediately became clear that the first logician not answering is the information the second one needs to know his hat is different color than the third.

  • @dmcs2003
    @dmcs2003 Před 7 měsíci +5

    At timestamp 0:46 the warden says they are not allowed to talk to each other. So right at 3:17 when #1 talks, the warden should have said in the voice of Bill Paxton from Aliens, "Game over, man", and they should have been marched back into jail.

    • @creeper6530
      @creeper6530 Před 3 dny

      Exactly. Every logician should only find out if another logician guessed right after taking a guess himself/herself. Or more generally, no communication, since silence is communication as well, it communicates that 2 and 3 have different hats. That'd make the problem unsolvable though, so the flaw had to be intentional.

  • @blueyindustries8503
    @blueyindustries8503 Před 5 měsíci +4

    I misheard the instructions at first and try figuring out how they could all state the color of the hat for certain. I’m glad I listened to the instructions again.

  • @Maxm4544
    @Maxm4544 Před 7 měsíci +32

    Surprisingly, 3 is the next person that can guess his hat, after 2 shouted blue then if 3 is blue, 1 would shout right away, so 3 knows his hat is red

    • @vbregier
      @vbregier Před 7 měsíci +3

      3 does not even have to wait. He knows that he has different color than 2, for same reason 2 knows. So when 2 says his hat color, 3 immediately knows his color.
      Then 1 and 4 have no way to determine their color, as no one sees them. Which is a bit disappointing.

    • @taflo1981
      @taflo1981 Před 7 měsíci

      Even better: If the distribution of hats is arbitrary, logicians 2 and 3 are nevertheless always sure to find out their hat colours. The other two only find out if they wear the same colour (and 2 and 3 wear the other colour). Plus, logician 3 doesn't even have to know the order of people behind him. He only has to wait for someone to call out a colour and will then be sure he wears the opposite colour.

    • @taflo1981
      @taflo1981 Před 7 měsíci

      @@yafriendceko That's the neat thing here, 3 doesn't need to know. All they know is that the first one to call out a colour (provided they only do so once they're 100% certain, which is generally assumed anyway) cannot wear the same colour as 3 does.

  • @CasualTS
    @CasualTS Před 6 měsíci +20

    I got asked a version of this in an interview about 10 years ago. I remember when the question was posed to me I thought there couldn't possibly be an answer. But the interviewer asked me to try working it anyway. I spent an agonizing amount of time on it, building a logic table. Eventually I figured it out and was very happy! I didn't get the job, but I was still pleased with myself for answering this puzzle correctly in a nerve wracking situation.

    • @h3rtzen
      @h3rtzen Před 4 měsíci +1

      I’ve interviewed a lot of people and I think question like these are MUCH harder in a stressed situation, so kudos to you

  • @Endcsline_Live2D
    @Endcsline_Live2D Před 7 měsíci +6

    That question got asked in Honkai Star Rail too xD
    In short:
    After some waiting, 1 stays silent, meaning 1 and 2 aren't the same color (he'd know his color otherwise)
    2 understands that now and knows his color must be blue, since 3 has red.
    So 2 will be able to say his hat color with certainty

  • @manusarda
    @manusarda Před 7 měsíci +7

    An easy puzzle after a long time.
    But i feel that you unnecessarily elongated the solution by giving all possibilities.
    Just say that 1st person didn't shout his colour which give information to 2nd one that his colour is different than 3rd one.

  • @siarheipisarau6808
    @siarheipisarau6808 Před 4 měsíci +1

    From the problem statement, it is not clear that the first person can see the next two hats. It is really important to know this information for problem solving

  • @nicknike
    @nicknike Před 7 měsíci +15

    Your solution works perfectly, but it is unnecessarily complicated. The beginning with excluding 3 and 4 is fine. But then 1 and 2 can forget about any combinations. If 1 saw two blue hats, he'd know his hat is red, and vice versa if he saw two red hats, he'd know his hat is blue. Since he's not saying anything, 2 realizes 1 must see both colours on his and 3's head and concludes his hat is red if 3's is blue and blue if 3's is red.

  • @SirKenchalot
    @SirKenchalot Před 7 měsíci +8

    I didn't iterate the possible arrangements but just worked out that in general, Logician 4 can see 2 logicians and if they have different colored hats, he cannot be certain of the color of his own hat. So, given Logician 1's uncertainty, Logician 2 knows his hat must be the opposite color to that which he can see on Logician 3, hence he announces he is wearing a blue hat.

    • @Azarathification
      @Azarathification Před 7 měsíci +2

      Logician 4 doesn't see any other, just like logician 3...

    • @SirKenchalot
      @SirKenchalot Před 7 měsíci +1

      @@Azarathification Yeah, I realized after that when I said Logician 4, I meant 1 but now this is getting complicated to explain.

  • @b_z5571
    @b_z5571 Před 7 měsíci +87

    You should include a timeframe for when they answer to make the puzzle more clear something like every 5 minutes the warden will ask for an answer so that the time between isn’t arbitrary

    • @Bob94390
      @Bob94390 Před 7 měsíci +12

      5 seconds would be enough for person 1 to realize that person 2 and 3 have different colors. After those 5 seconds, person 2 can say that his color is the opposite of the one in front of him.

    • @b_z5571
      @b_z5571 Před 7 měsíci +10

      @@Bob94390 true it may be enough but if you’re a perfect logician and you aren’t given a timeframe for answering and you know you have to wait for the second answer slot how do you know how long it will take for the first answer slot to go unanswered. Maybe the person in spot 1 is also a perfect logician but they take a little more time than you think they would and end up with a wrong answer. The time slots make the puzzle cleaner for us and the fake computer people the puzzle is interested in.

    • @erickpoorbaugh6728
      @erickpoorbaugh6728 Před 7 měsíci +12

      Any logicians should be able to figure out “I see both red hats so I must be wearing blue” almost immediately. Unless Person 1 is daydreaming or something, it shouldn’t take more than a few seconds for Person 2 to be certain that Person 1 doesn’t have enough information to know. If anything, you just need to add the assumption that everyone’s actually paying attention.

    • @DreadX10
      @DreadX10 Před 7 měsíci +3

      No time-frame needed. No. 1 would know the answer instantly (sees two hats of same colour) or never.
      By your reasoning, we have to also account for the fact that no.2 could be an a**hole who wants to be in prison and never speaks up (although he knows the answer).

    • @b_z5571
      @b_z5571 Před 7 měsíci +1

      @@DreadX10 in this configuration yes but what if it’s a different configuration and no1 takes an extra second before answering. No2 has suddenly trapped them all in jail. The whole point of these puzzles is that they’re guaranteed with perfect logic but not giving them a set time to answer can lead to mistakes. If no2 solved it slightly faster than no1 and then answered and the configuration was different that would be it. With an answering cadence problem solved.

  • @nicksmeta
    @nicksmeta Před 5 měsíci +2

    Since they're not allowed to communicate, this timing strategy does also kind of rely on chance. My take was that the logician 1 must say "I'm 50% certain that...".

  • @wagglebutt
    @wagglebutt Před 7 měsíci +4

    Now solve for the amount of time #2 must wait before deciding that #1, doesn't know.

  • @alexeifando747
    @alexeifando747 Před 7 měsíci +16

    An interesting variation of a this kind of problem is this: 3 logicians wanted to figure out which of them is smartest, so they went to the king. The king devised a test in which they were to sit in a circle and close their eyes. They were told that a hat, either red or blue, will be placed on each of them. They were also told that there are 2 blue and 3 red hats in total. When they open their eyes, they are supposed to figure out which hat colour they are wearing. Each will only see the hats of the two logicians in front of them. The first to shout out their hat colour is the smartest. While their eyes were closed, the king placed a red hat on each of them. When they opened their eyes, after a short time, one of them shouted that they were wearing a red hat. He was declared the smartest. The question is, how did he think?

    • @manudude02
      @manudude02 Před 7 měsíci +19

      Not seen that variation, but it's cute.
      1. If any of them were looking at two blue hats, they would instantly know they were wearing a red hat, but no-one answers so it's not two blue hats.
      2. Having figured this out, if someone saw one blue hat, they would instantly know their hat was red, but no-one answers meaning there isn't one blue hat.
      3. The only remaining possibility is all 3 hats are red, and so it's just down to who is fastest to answer red.

    • @MrDannyDetail
      @MrDannyDetail Před 7 měsíci +6

      @@manudude02 The logic is nice, but you start to get a difficulty with how to define 'instantly + instantly'. How long should one of them wait to determine that they are now in the second consecutive silence and not the first one? Because of this difficulty they cannot simply rush to be the fastest to say 'red' the second they reason by this method that it could logically be the answer, just in case one or both the others are still in the first of the two consecutive silences.

    • @antoniopedrofalcaolopesmor6095
      @antoniopedrofalcaolopesmor6095 Před 7 měsíci +4

      The king asks the first time and silence, so it excludes 2 blue hats.
      The king asks second time and silence again, so it excludes one blue hat.
      When the king asks for the third time, they all know they're wearing red hats, because that's the only remaining possibility, and the fastest to speak wins.

    • @raghavr2601
      @raghavr2601 Před 7 měsíci +5

      The test needs to be fair, so all of them must be wearing the red hat. Therefore the first to realise that answered the question. I know this doesn't employ logic but common sense but I feel the given task isn't suited for it

    • @techcloud2510
      @techcloud2510 Před 7 měsíci +1

      ​@@manudude02there were 2 blue hats😐 so if one blue hat was in front of me then how would I assume I m wearing red hat? It can still be blue hat?

  • @IMYTnNERDEE2
    @IMYTnNERDEE2 Před 4 měsíci +1

    you've brought in a time dimension into the problem, and also the rule of not talking to one another is broken if silence is considered communication

  • @noodle_fc
    @noodle_fc Před 7 měsíci +1

    Oh Presh, you do love an overcomplicated solution. This takes exactly two very easy-to-follow steps-no formulae, no tables. • If #1 saw the same color on #2 and #3, he would shout that he had the other color. • He doesn't shout, so #2 knows he is wearing a different color than #3 and shouts out his hat color. DONE. Why would you start with the two who have least information?!

  • @1a1u0g9t4s2u
    @1a1u0g9t4s2u Před 7 měsíci +5

    Interesting, heard this logic problem on a car talk radio program many years ago. Like a good humorous story nice to see this make the rounds again. Thanks for sharing.

  • @Adam-gd6pp
    @Adam-gd6pp Před 7 měsíci +5

    Simple explanation (spoilers!):
    If L1 saw two hats of the same color, he'd know that his hat was the other color. Since L1 does not know his hat color, L2 knows that his own hat must be the color that he does not see on L3.

  • @GeorgeFoot
    @GeorgeFoot Před 7 měsíci +4

    The flaw is that 2 can logically never be sure that 1 isn't going to speak up. He can't know how long it is reasonable to wait before assuming 1 isn't going to speak up - that element is social, not logical, as I'm sure any autistic person will agree. If the warden explicitly asked each person one at a time then this would be resolved.

  • @tom.1
    @tom.1 Před 7 měsíci +14

    Number 1 remains silent since he sees 1 blue and 1 red hat, leaving two options open. Number 2 (logician as he is) realizes that when number 1 remains silent, number 1 must face 1 blue and 1 red hat. Since number 2 can see number 3 is wearing a red hat, he knows for sure he is wearing blue himself.

    • @honor9lite1337
      @honor9lite1337 Před 7 měsíci +1

      Understood bitzh

    • @levimaxton6307
      @levimaxton6307 Před 6 měsíci

      except when it comes down to number 1 and number 4 still not knowing which color hat they are wearing.

  • @AzureKyle
    @AzureKyle Před 7 měsíci +4

    I've seen one similar to this on TED-Ed, though that was with more people, and a random distribution of hats. In this case, if the top person sees two red hats, he knows he has blue, and thus they win, same thing if he sees two blue hats, he knows he has red. However, if he sees a red and a blue, he has a 50/50 chance, and thus hesitates to answer. This then tells the next person in line that he sees a hat of each color, since he doesn't automatically know his own hat color. So he looks at the hat in front of him, and instantly knows his own hat color, being the opposite of the person in front of him, thus they win. The third and fourth people don't even need to answer.

  • @zewzit
    @zewzit Před 6 měsíci +5

    Hmmm but you said they can't communicate with each other at all. Person 2 can only guess their own hat is blue because they were awaiting for the shout of Person 1 and didn't hear it, that is a form of communication. If the one who knew their hat color had to whisper it to the warden instead of shouting, there would be no solution, and no communication like the rules stated.

    • @jaarneal
      @jaarneal Před 5 měsíci +1

      I’ll go one further. Even with the stipulation that this counts as communication (which it absolutely does, you nailed it), the puzzle is trivially soluble. The illustration shows that the hats are brimmed, and the narration makes no claim that the men cannot see their own hats.
      So, an acceptable answer is: All 4 men can immediately state with certainty the color of their own hat, because they can see their own hats.

    • @zewzit
      @zewzit Před 5 měsíci +1

      ​@@jaarnealahah fair enough! guess you could say they just had to _look up_ the answer

    • @MagnusRender
      @MagnusRender Před 4 měsíci

      No good. They may only look ahead, not up. And no cheating by whispering either. Only pure logic.@@zewzit

  • @msnirajagrawal
    @msnirajagrawal Před 7 měsíci +2

    This logic was quite simple. I didn't use your method exactly but somewhat similar to your answer. As logician 1 is confused, means 2 will understand that the hat of 2 and 3 are of different color. So he sees 3 has red color and concludes 2 himself is blue.

  • @shadam_free
    @shadam_free Před 7 měsíci +1

    The riddle can be solved by just Logician 1, 2 and 3 interacting with each other. Logician 4 is pretty much just a distraction for the solver. It would be the same riddle with 3 guys, 3 hats, where 2 is the same color and one is different.

  • @ArabianShark
    @ArabianShark Před 7 měsíci +11

    Solved it in under a minute, but, then again, I had "help"; I already knew a similar problem (the Three Chinese Philosophers riddle, in which a queen paints either a red or a green dot on each of three philosophers' foreheads and challenges them to find out, without conferring, whether their own dot is red or green). To be perfectly honest, I thought Presh's explanation was a bit over-complicated; he could have been a bit more succinct and to the point.

  • @SkiddlyDoo
    @SkiddlyDoo Před 6 měsíci +8

    I seem to remember a harder version of this puzzle where all 4 men had to guess the color of their hats. As soon as 2 guesses, number 3 immediately knows the color of his hat as well. I don't remember how 1 and 4 got their color but I think it had to do with the wording of the puzzle.

    • @couchpotatoe91
      @couchpotatoe91 Před 5 měsíci +2

      Yeah, I was trying to figure out the same. Like, what'd be different if 1 and 4 had their colors switched?

    • @drewsworthh
      @drewsworthh Před 5 měsíci +1

      @@couchpotatoe91nothing because in order for them all to get out only one person has to know their hat color

    • @couchpotatoe91
      @couchpotatoe91 Před 5 měsíci +1

      @@drewsworthh ah ok. I remember a prisoner scenario where everyone has to guess their color in order to be freed. But it had some twist iirc like the guy behind the wall was actually on the very left behind another wall and could only glimpse the tip of the last person's hat.

    • @StephenWong14
      @StephenWong14 Před 5 měsíci

      The difficult version is 100 people (could have been any number) lining up. There are 2 colours but the proportion of hats is not given. Everyone takes turn guessing starting from the back. They're allowed time to strategize. They can only make a guess but not signalling using other things like volume. The optimal strategy ensures everyone except the one at the back can deduce the colour correctly.

  • @bauer_
    @bauer_ Před měsícem +1

    Simple answer:
    - Logician 2 knows that Logician 1 can see 2 and 3.
    - And therefore if 2 and 3 share the same color, Logician 1 will know his color.
    - Since Logician 1 doesn’t say anything, this only means 2 and 3 have different color.
    - Logician 2 can see red on Logician 3 ==> he has a blue hat

  • @paulguy5368
    @paulguy5368 Před 3 měsíci

    I've always enjoyed puzzles, particularly logic puzzles. I first heard this one around 25 years ago from a guy who worked in the carpark of the company where I worked. When he told me, I thought about it for a few minutes before realising the answer. As I told him he stated that he already knew the answer but didn't know the reason why, which I was able to explain.

  • @oro5421
    @oro5421 Před 7 měsíci +3

    This is a very easy puzzle. But it was explained the very complicated way. That’s kinda the opposite of what was supposed to happen

  • @maker0824
    @maker0824 Před 7 měsíci +3

    This was a very very easy puzzle. I’ve never solved one of these before, but this one was extremely easy

  • @ludo534
    @ludo534 Před 7 měsíci +2

    You give the rules that they cannot communicate to each other, but then says #2 knows their hat because they have the information that #1 see 2 different colors. But without communicating he cannot know that …

  • @mark91345
    @mark91345 Před měsícem +1

    Excellent video! I went through this a few times to fully understand the logic (ok, I'm slow), but now I do and I think this is terrific!

  • @kevinmartin957
    @kevinmartin957 Před 7 měsíci +2

    You don't really need the first step (2 eliminating half the possibilities). 1's silence immediately means that 2 and 3 have different colours, so upon noting 1's silence 2 can announce his colour as the opposite of the one he sees on 3. The question, though, is how long should 2 wait to be sure that 1 doesn't see two hats the same colour rather than, say, is still fumbling with his glasses?

  • @matthewharrigan3568
    @matthewharrigan3568 Před 7 měsíci +5

    The obvious answer is to look at the brim of your own hat

    • @RGP_Maths
      @RGP_Maths Před 7 měsíci

      😂

    • @asphaltpilgrim
      @asphaltpilgrim Před 7 měsíci +1

      Should have more likes. XD I saw this puzzle before with simple conical hats, but didn't think about why they need to be, haha.

  • @bvwalker1
    @bvwalker1 Před 7 měsíci +1

    What I find interesting is we use a combination formula, 4C2, to determine a permutation ( the ordered number of ways they can be arranged with the hats).

  • @HalfEye79
    @HalfEye79 Před 2 měsíci

    I know a different yet similar logic puzzle:
    Three Logicians are behind another. They each have a red or blue hat. Logician 1 can see both other hats, Logician 2 can see one and Logician 3 can see no hat. They are told, that the capturer has 2 red hats and 3 blue hats. The not used hats were hidden. After a long while Logician 3 says with certainty his hat-color. Why and which color is it?
    If Logician 1 could see two red hats, he could assume, that he has a blue hat. But as he says nothing, he can't see two red hats.
    Therefore, if Logician 2 could see a red hat, he could assume, he has a blue hat, because otherwise Logician 1 would say his color.
    Therefore, Logician 2 can't see a red hat, so Logician 3 knows, that he has a blue hat.

  • @piagarrels248
    @piagarrels248 Před 6 měsíci +3

    I overheard the fact that only one prisoner needs to answer correctly.. So I tried to solve this for like ages until I watched again. But then I thought the solution is to easy if 1 can see 2 and 3. What I'm trying to say is that I spend an unreasonable amount of time trying to solve this puzzle.😂

  • @jessejordache1869
    @jessejordache1869 Před 6 měsíci +30

    I love "a group of logicians" problems. I thought your solution was overly complex though -- you simply have to realize that when 1 doesn't speak, 2 realizes that means that he and 3 have different colored hats, and since 3 has a red hat, his must be blue. (If 2 and 3 had the same color, 1 would know their hat color immediately).

  • @sundareshvenugopal6575
    @sundareshvenugopal6575 Před 7 měsíci +1

    If hats on 2 and 3 are the same color 2 can expect 1 to speak, but it 1 does not speak for a time, 2 can assume that his hat is of the opposite color to 1 whose hat he can see and can speak.

  • @mike1024.
    @mike1024. Před 7 měsíci +2

    Pretty simple actually. The first man would speak if he saw two identical hats in front of him. Since he doesn't, it should become clear to the others after a few minutes that positions 2 and 3 contain one red and one blue hat. The second man would then know this, see a red hat in front of him, and state that his hat is blue.

  • @aychinger
    @aychinger Před 7 měsíci +5

    I used to present this to my undergrad students years ago, plus three different cute variations of this riddle (three guys in a circle seeing each other, then once again but one of them blind, then many logicians on a train)… Will you present those advanced versions too, in another video? 👍

  • @jimdecamp7204
    @jimdecamp7204 Před 7 měsíci +6

    The assumption is that all four prisoners know how many of each hat is in play and that each credits the other with being perfectly capable and infallible logicians.
    One can think of the problem as having rounds. Each prisoner enters his response on each round. After each round all the prisoners know each of the other prisoners' responses. The responses are PASS, RED, BLUE.
    Number 2 can see that number 3's hat is red. If his own (number 2's) hat were red, then number 1 would instantly know that his hat is blue. Number 1's silence convinces number 2 that his own had must be blue. No one else can tell what color their own hat is. Until number 2 speaks, number 3 knows for sure that he and number 2 have different colors.
    On round one all prisoners pass.
    On round two, number 2 can infer from number 1's pass that he, prisoner 2 has a blue hat, so the responses are:
    PASS, BLUE, PASS, PASS
    On round three:
    RED, BLUE, PASS, PASS.
    No further progress is possible, but at this point 1 and 2 know all four colors, and everyone knows 1 and 2.

    • @uditisgaming5872
      @uditisgaming5872 Před 7 měsíci +5

      how you commented 2 days ago video is published few minutes ago only????????

    • @stevenherschkowitz2591
      @stevenherschkowitz2591 Před 7 měsíci +4

      @@uditisgaming5872 What are you, a logician?😂

    • @JLvatron
      @JLvatron Před 7 měsíci +1

      No, it's not an assumption.
      The 4 are logicians and friends, so they know this info.
      And the Warden told them it's 2 red hats and 2 blue hats, so all is known, no assumptions required.

    • @stevenherschkowitz2591
      @stevenherschkowitz2591 Před 7 měsíci +3

      Actually, round three (assuming the answers are not given aloud in order) would be: pass, blue, red, pass. After Number 2 is able to deduce that he is wearing a blue hat, Number 3 knows that Number 1 saw a blue hat on Number 2 and a red hat on him (Number 3). If each person responds aloud and in order of their number, then Number 3 would announce the color of his hat in round 2.

    • @Yusso
      @Yusso Před 7 měsíci +3

      I agree with the idea but the results are wrong
      Round 1: Pass, Pass, Pass, Pass
      Round 2: Pass, Blue, Pass, Pass
      Round 3: Pass, Blue, Red, Pass
      That's it, it's not possible for person 1 and 4 to guess their colors so it's 50/50 chance.

  • @briangonigal3974
    @briangonigal3974 Před 7 měsíci +1

    You made that explanation so much more complicated than it needed to be! All you needed to say was that there were only two hats of each color, and thus if logician one saw two hats of the same color he would know that he was looking at all the hats of that color and thus his hat must be the other color, and logician 2knows this, so if he doesn’t hear logician one state the color of his hat, then he and logician three must be wearing two different color hats and thus his hat is the color he *doesnt* see in font of him. (And fwiw, once logician three hears logician two shout out that he’s wearing a blue hat, he would know that his own hat must be red, not that he would have any reason to care at that point.)

  • @EllipticGeometry
    @EllipticGeometry Před 7 měsíci +1

    If 2 and 3 had the same color, 1 would announce they’re wearing the opposite color. 2 could hear that announcement but it isn’t made, despite allowing one whole second for a perfect logician to make it. 2 then knows that they’re wearing the opposite of 3, i.e. blue. 4 is a little annoyed to be a background prop just to wear an unseen hat, but is glad to go free.

  • @dantesos7564
    @dantesos7564 Před 7 měsíci +6

    I find these logic problems so ridiculous sometimes. Why take a simple thing and make a math problem out of it? Thats madness😅

  • @andoru
    @andoru Před 7 měsíci +43

    Your channel is awesome but this is the worst explanation of a problem ever. Much more simply stated as “If position 1 sees two hats the same, he calls out other colour, but if silent, position 2 calls out the opposite of what he sees 3 wearing”.

    • @noahblack914
      @noahblack914 Před 7 měsíci +2

      You must not have had many things explained to you if you think this explanation that takes one unnecessary detour is "the worst explanation of a problem ever"

    • @LaughgreatYT
      @LaughgreatYT Před 7 měsíci

      ⁠@@noahblack914its still a lot longer than needed, we didnt really need math or anything, this comment is way easier to explain and to visualise

  • @3dplanet100
    @3dplanet100 Před 7 měsíci +1

    I really love these logic puzzles.

  • @TheOneAndOnlyCatfish.
    @TheOneAndOnlyCatfish. Před 5 měsíci +2

    these guys cannot communicate with eachother.
    Proceeds to make them communicate.

  • @Not_Cool_
    @Not_Cool_ Před měsícem +1

    Plot twist: Logician 4 is watching them solve this with the warden

  • @ruturajpatwardhan9133
    @ruturajpatwardhan9133 Před měsícem

    Excellent, I was searching this puzzle since long.

  • @Cyberdactyl
    @Cyberdactyl Před 5 měsíci +1

    _"After a while after #2 doesn't answer"_ is kind of a dishonest modification to the rules.

  • @raitouyagami995
    @raitouyagami995 Před 6 měsíci

    m1 - nice
    m2 - well done
    m3 - good work
    m4 - don't even have to be here
    autor - slowpoke
    another variant of this question that teacher asked us at school
    some1 have 5 hats (2 blue and 3 red) and he will put 3 of them on 3 ppl and place them in circle in front of each other, if some1 says his hat color they win, other rules is the same

  • @noodle69
    @noodle69 Před 7 měsíci +1

    This is so incredibly easy. It was so easy in fact, that I questioned if it really only took more 4 seconds to figure out.

    • @Cyberdactyl
      @Cyberdactyl Před 5 měsíci

      Just like the honesty of thumbing up your own comment.

  • @MoLewis57
    @MoLewis57 Před 5 měsíci

    This explanation is way more complicated than it needs to be.
    The quickest way to describe the solution is the following.
    Logician #2 sees a red hat in front of him. He knows that if his hat was red that #1 would see two red hats and #1 would immediately deduce that his hat was blue, because there can only be 2 red hats ( which didn't happen ). Thus, #2 is able to definitely deduce that he is wearing a blue hat.
    If I was in #2's positions, I'm definitely not considering all the position configurations. I'm just thinking of what would happen if the guy behind my saw 2 red hats.

  • @AXE668
    @AXE668 Před 5 měsíci +2

    Must admit, I didn't even think about the probability. Just that 2 would know that 1's inability to determine what he's wearing must mean that he's seeing a blue hat and a red hat and the fact that 2 can see a red hat means he must be wearing a blue hat. Thanks for posting as I can now explain to my wife that I am fully entitled to a celebratory glass of wine.

  • @nikolaskoutroulakis571
    @nikolaskoutroulakis571 Před 5 měsíci

    Idk if I would say this is strictly a logic puzzle, since the crucial step in it is an inductive inference.
    1 taking a long time to answer does not strictly entail that he is stumped, since he could have for example, just fallen asleep, or struck a deal with one of the guards, or maybe has a grudge against the other logicians. However improbable these scenarios might be, they prevent this from being a logic puzzle strictly, since it relies on the assumption that the first logician would take a long time to answer only if he didn’t have enough information to complete the puzzle.
    Still though a very interesting puzzle, and enjoyable video

  • @kamilhorvat8290
    @kamilhorvat8290 Před 6 měsíci +1

    This puzzle proves, that studying formal logic is best preparation for criminal career.

  •  Před 7 měsíci +1

    That's an overcomplicated solution.
    You don't need possibilites.
    If #1 sees 2 same color hats on #2 and # 3's head, he can tell his hat's color.
    If he doesn't tell anything, #2 knows that he and #3 wear different color hats. Because he sees a red hat he knows he wears a blue one.

  • @tobyfitzpatrick3914
    @tobyfitzpatrick3914 Před 7 měsíci +1

    What throws people off is that they think that No. 1 must be the one to answer as he has _the most information_ ...!

  • @rkidy
    @rkidy Před 9 dny

    I think the core of this problem is that while they cannot speak to each other, they are able to communicate through silence

  • @BrianStewart126
    @BrianStewart126 Před 7 měsíci

    1: #3 and #4 do have information. They have the same information about the lack of response from #1 that #2 has.
    2: Nobody said they had give a true or specific response. They just had to respond with certainty. Any one of them could say "My hat is certainly red or blue!" or even "My hat is certainly green!" and win freedom for all of them.

  • @msew
    @msew Před 7 měsíci

    Oh that is great. I love that that "time" is the "hidden" axis here.

  • @dfailsthemost
    @dfailsthemost Před 9 dny

    I was so relieved I got this, for some reason.

  • @Kaarija1
    @Kaarija1 Před 6 měsíci

    I can write it simpler. If #1 saw two hats of the same color, he would instantly know his is different and shout that out. Since he didn’t #2 can conclude that his hat is DIFFERENT from #3’s hat, so he can shout out whatever color is not on #3’s hat.

  • @AbuBakrxKiNG12
    @AbuBakrxKiNG12 Před 7 měsíci

    Incredible explaination!

  • @TheJaguar1983
    @TheJaguar1983 Před 2 měsíci

    I got as far as working out the probabilities and how it would be simple if 2 and 3 had the same colour. I didn't think of the final step. Very clever.

  • @j.r.1210
    @j.r.1210 Před 7 měsíci +1

    This is a simple problem of pure logic, and by that I mean SIMPLE, and LOGIC. There's no need to introduce any mathematics whatsoever. Sometimes you really can reason without formulas.

  • @seanthornton1136
    @seanthornton1136 Před 5 měsíci

    Its interesting that this problem is presented with one specific permutation of hats since any permutation of hats will allow the prisoners to escape.
    Case 1: L2 and L3 have the same hat color. L1 answers instantly of his hat color as it must be different than the 2 hats he sees.
    Case 2: L2 and L3 have different hat colors. L1 does not answer since there are 2 possible permutations from what he sees. L2 reasons that L1 would answer instantly if this were Case 1, thus L2 knows they have a different hat color than L3 and so L2 answers correctly.

  • @WmTRiker
    @WmTRiker Před 5 měsíci +2

    What an overcomplicated explanation for such a simple solution! I'm neither a logician nor a mathematician, yet I figured it out in less time than it took to explain it.

  • @davidmack4495
    @davidmack4495 Před 7 měsíci +1

    if the hats were all one color throughout the whole hat, all they'd have to do is look up at the brim of the hat to see what color they are wearing.

  • @brianviktor8212
    @brianviktor8212 Před 7 měsíci +1

    It's a nice puzzle, took me a few minutes to figure it out. But it's simpler to explain without any Math. Person 2 notices that person 1 doesn't say anything, which can ONLY be the case if person 2 and 3 each have a red and blue hat. Would they have both red or blue hats, person 1 would immediately know his own and say it. Given that person 2 sees person 3's hat being red, the only way is that his own hat must be blue.

  • @Lefty7788tinkatolli
    @Lefty7788tinkatolli Před 6 měsíci

    One of my all time favourites, this. I first heard this during a 7-hour bus journey on a school trip when I was 10, and I have been confusing and baffling friends with this for 16 years ever since. VERY few people I have done this on have been able to work it out. They are all convinced there is no answer to this, and there has to be some sort of cheating involved. The stories people have come up with that involve cheating! (Reflective watches! Really!!)
    I think the difficulty is, everyone assumes logician 1 will get the answer because they have the most information (they can see 2 hats). And they discard the possibility that it is in fact one of the ones with less information that can get it. So they try to come up with all the ways logician 1 could get it... and then promptly get stuck.

  • @dnarna8994
    @dnarna8994 Před 7 měsíci

    This is an interesting and intriguing logic problem. It is old school from the 60's if not before.

  • @lqr824
    @lqr824 Před 5 měsíci

    2:20 you're overthinking it. You don't need combinatorics or tables. If 1 sees two red or two blue he'll know his own color with a couple seconds' reflection. Once 2 has given him that time, and not heard an answer, 2 knows he differs from 3. MORE GENERALLY, 2 knows that his hat plus everything he sees before him won't yield an answer. As long as the puzzle would have let 1 solve the problem had 2 one color, 2 knows he has the other color. For instance: 10,000 people are on the hill, with the hats split 50/50. 1 sees 4999/4999; if he saw 5000 of either he'd know his own hat. 2 sees 4998/4999 and knows his own hat is the 4998 color.

  • @woody40000
    @woody40000 Před 5 měsíci

    Instead of 6 groups you can simplify to two groups of outcomes: that either the two hats in the middle match, or they are different. If they match number 1 says the opposite colour to the 2 he can see. If he stays silent then 2 says the opposite colour to the one in front of them.

  • @MoLewis57
    @MoLewis57 Před 5 měsíci

    I was given a very similar logic problem as a kid.
    In this problem, there are 3 logical prisoners. The warden makes them sit in a triangle formation, all facing each other. He tells then he will place either a red or a blue dot on each of their heads. He tells them if they can deduce the color of the dot on their head, they will be set free, but if they guess wrong they will be executed. He also tells them they must raise their hand if they can see a red dot on anyone else, and if they fail to do so they will be executed. He tells them they will be given a 30 minute time limit to come up with a answer, and if no one answers they will play the game again, this time with each person being randomly assigned a new dot color. They are told they will play until somebody wins or loses. In the first round, the warden puts a red dot on each prisoner's forehead. All the prisoners raise their hands, because they can see a red dot. After about 15 tense minutes, one prisoner confidently announces, "I have a red dot" is set free. Why was he so sure he had a red dot?

    • @MagnusRender
      @MagnusRender Před 4 měsíci

      Another prisoner looked at the 3rd guy with a blue dot for 15 minutes.

  • @izzmus
    @izzmus Před 7 měsíci +1

    The stated solution hinges on breaking the rules - #1 has to talk for #2 to figure it out, and the rules say no talking.
    However, #2 can merely take #1's silence to know that he is not wearing the same color hat as #3.

    • @joshuasgameplays9850
      @joshuasgameplays9850 Před 7 měsíci

      Yeah that's exactly what he's saying, he never said anywhere in the video that #1 tells #2 that he's confused.

    • @izzmus
      @izzmus Před 7 měsíci

      @@joshuasgameplays9850 he literally says that #1 states that he can't deduce what hat he is wearing.

    • @joshuasgameplays9850
      @joshuasgameplays9850 Před 7 měsíci

      @@izzmus When does he say that?

  • @deerh2o
    @deerh2o Před 7 měsíci +1

    Why complicate with all the possibilities? If Logician 1 sees two of the same color, s/he will speak out immediately. When that doesn't happen, Logician 2 knows his/her/their hat is the opposite color of Logician 3.

  • @mikeyC79
    @mikeyC79 Před 7 měsíci

    Thank for you this one. really enjoyed it

  • @epicappli3540
    @epicappli3540 Před 7 měsíci +1

    It surely was a very fun game to play for logicians 3 and 4!

  • @edwardnedharvey8019
    @edwardnedharvey8019 Před 7 měsíci

    I was about to post the exact same thing as @londonbobby. The explanation given in the video was unnecessarily complex. The easy explanation is: If #1 sees two hats the same color, then he speaks out immediately. If he doesn't speak out immediately, it means #2 and #3 are different, and this information is communicated by #1 being silent. So #2 knows the color of #3, and #2 knows his hat must be different from #3, so #2 speaks out.

    • @rioc2802
      @rioc2802 Před 7 měsíci

      Congrats. You basically regurgitated exactly what the video said but left out 75% of the actual explaining part. 😁

  • @daleodorito
    @daleodorito Před 7 měsíci

    I love how logician 3 and 4 are just looking at a wall doing absolutely nothing even though they might know the logic of the puzzle.

  • @gaijininja
    @gaijininja Před 7 měsíci +1

    When I first saw this logic puzzle in the late 70’s, the three prisoners (Never called logicians in the original.) were on the same level, 1, could only see 2’s hat, not 3’s. How is that older and much harder version worked out

  • @thedead073
    @thedead073 Před 7 měsíci +1

    Person 2, upon realising that person 1 doesn't immediately know what colour their hat is, can deduce that the colour of their hat is not the colour of person 3's hat
    Otherwise person 1 says the colour of their hat with certainty

  • @lollol-tt3fx
    @lollol-tt3fx Před 7 měsíci +1

    Nice video. Good channel. Keep up the good work.

  • @niteshm6
    @niteshm6 Před 7 měsíci

    There is another similar puzzle. There are three prisoners. And there are 5 hats (3 black and 2 white). We are using only 3 hats. The prisoners know that there are 5 hats, but they don't know which 3 hats are being used. All the rules are same. Which prisoner will guess his hat? There are multiple answers according to the hat placement.

  • @coyotemoon722
    @coyotemoon722 Před 5 měsíci

    This is a classic. Cool to see it on CZcams

  • @AmiraliAmirhamzeh-mn3ko
    @AmiraliAmirhamzeh-mn3ko Před 7 měsíci +1

    Logician 2 is the one who can say for sure what the color of his hat is. He sees the no. 3 and knows his hat is red. He knows that if his hat was red the no.1 would immediatelly yell the answer. Now that he is silent too, logician 2 knows no. 1 has the amount of information that makes him to guess on a 50/50 state. This implies that the other red hat is for sure for either no.1 or no.4 so the logician 2 yells mine is blue for sure!