Video není dostupné.
Omlouváme se.

Instantaneous Center of Zero Velocity (learn to solve any problem step by step)

Sdílet
Vložit
  • čas přidán 7. 08. 2024
  • Learn to solve Instantaneous Center of Zero Velocity problems in dynamics, step by step with animated examples. Learn to calculate where the IC point is, how to draw radial lines and more!
    🔹Rigid Bodies Rotation About a Fixed Axis - • Rigid Bodies: Rotation...
    If you found these videos helpful and you really want to give something, it's very much appreciated.
    Donate:
    🔹 ko-fi.com/questionsolutions
    🔹 www.questionsolutions.com/donate
    🔹 PayPal: questionsolutions@questionsolutions.com
    Intro (00:00)
    The shaper mechanism is designed to give a slow cutting stroke (01:43)
    If bar AB has an angular velocity ωAB = 6 rad/s (03:44)
    The cylinder B rolls on the fixed cylinder A without slipping. (05:25)
    Cylinder A rolls on the fixed cylinder B without slipping. (06:17)
    Find more at www.questionsolutions.com
    Book used: R. C. Hibbeler and K. B. Yap, Mechanics for engineers - dynamics. Singapore: Pearson Education, 2014.

Komentáře • 194

  • @FakieRecon
    @FakieRecon Před 3 lety +68

    Damn man I'm so glad I found this channel because ever since I bombed my last exam I started watching your videos and now I understand the material way more. I thought I was going to have to retake Dynamics, but you saved my grade. Keep up the good videos man!

    • @QuestionSolutions
      @QuestionSolutions  Před 3 lety +8

      I am super glad to hear this helped you understand the material. I wish you the best with your next exams, and I hope you pass dynamics! 👍

    • @carsonvessar3763
      @carsonvessar3763 Před 2 lety +1

      I found this channel kinda late in the semester so Im really fighting for my grade but this channel is the only thing keeping me afloat

  • @USERDISABLEDDJSLAYER12
    @USERDISABLEDDJSLAYER12 Před 2 lety +14

    You’re so under rated!! More people should know this channel. Thank you so much for helping us understand these lessons. Definitely will share this with everyone!

  • @erickcastellanos6814
    @erickcastellanos6814 Před 8 měsíci

    I literally love you. The visuals are so amzing and easy to understand! I love how you provide examples as well and acknowlege that examples help clarify concepts/ help learners see the concept in action.

    • @QuestionSolutions
      @QuestionSolutions  Před 8 měsíci

      I’m so glad to hear that you found the visuals and examples helpful! Your feedback is greatly appreciated and I’m thrilled to hear that the examples are helping. Thank you for your kind words! 😊

  • @steve8219
    @steve8219 Před 3 lety +40

    I paid almost $50000 per year to study in Engineering, found out free youtube videos better than professor's lectures

    • @QuestionSolutions
      @QuestionSolutions  Před 3 lety +7

      😅 Glad to hear these videos helped! Best wishes on your studies.

    • @timothyediu1785
      @timothyediu1785 Před 3 měsíci +3

      In reality we're just paying for papers

  • @loopilicous
    @loopilicous Před 3 lety +28

    Oh my goodness you are so helpful! Thank you and please keep the videos coming! Perhaps consider doing other topics too such as solids, materials, etc.?

    • @QuestionSolutions
      @QuestionSolutions  Před 3 lety +8

      You're very welcome. I hope to branch out to many different subjects, though time has been my enemy so far. Thank you very much for your comment, best of luck with your studies!

    • @nolanandy4203
      @nolanandy4203 Před 3 lety

      @Elian Camilo thanks so much for your reply. I found the site thru google and I'm trying it out atm.
      Takes quite some time so I will reply here later with my results.

  • @user-ee1vl6fw2i
    @user-ee1vl6fw2i Před 8 měsíci +6

    3 mins in to the vid and i already understand the whole lesson, really top tier sir! massive respect!

  • @a.shibeshi2276
    @a.shibeshi2276 Před 3 lety +2

    Thank you very much. It is so amazing how you make it very easy to understand. I am going to share it will all of my classmates now!

    • @QuestionSolutions
      @QuestionSolutions  Před 3 lety +2

      Thank you so much! I really appreciate the shares and your kind comment.

  • @camerongillespie870
    @camerongillespie870 Před 3 lety +3

    Exam prep this evening. I am very grateful for your videos. Many thanks.

  • @bonkgaming3646
    @bonkgaming3646 Před rokem +3

    Thank you so much for everything you do for us, you're really a kind soul, i can't thank you enough for what you do, i have my mechanics exam in 2 days and you've taught me everything i needed to know, thank you ❤️

    • @QuestionSolutions
      @QuestionSolutions  Před rokem +2

      You are so welcome! What a nice comment, thank you for taking the time to write it. I wish you the best with your exam, you'll do great! Keep up the awesome work ❤

    • @bonkgaming3646
      @bonkgaming3646 Před 7 měsíci +1

      ​@QuestionSolutions Im here again after completing my engineering, still owe a lot to this channel, you'll be remembered always

  • @TarickWalcott
    @TarickWalcott Před 2 lety +1

    Wow 10/10. Really great explanation!

  • @Nightfieldzop
    @Nightfieldzop Před 3 lety +3

    Very helpful thank you!

  • @woodsmith_1
    @woodsmith_1 Před 3 měsíci

    You're the best, man. You're helping so many people. Thank you!!

    • @QuestionSolutions
      @QuestionSolutions  Před 3 měsíci

      Happy to help! Keep up the great work and best wishes with your studies :)

  • @jamesruka6613
    @jamesruka6613 Před 8 měsíci

    I'm really thankful , very short and simple

  • @gehadyasser1001
    @gehadyasser1001 Před rokem

    Seriously u explain things very clearly thanks a lot !!

    • @QuestionSolutions
      @QuestionSolutions  Před rokem

      I am happy to hear that. You are very welcome and keep up the good work!

  • @hammy2779
    @hammy2779 Před rokem +1

    Youre the goat 🐐 Thanks so much for making it so much more easier to understand. You explained it in 5minutes compared to my lectures that takes 2 hours 😂

    • @QuestionSolutions
      @QuestionSolutions  Před rokem +1

      Thank you very much! Glad to hear it was easier to understand :)

  • @jaholden4
    @jaholden4 Před 4 měsíci

    great examples thank you

  • @peterisraeil8124
    @peterisraeil8124 Před 3 měsíci

    Again!! the least that I can do is thank you sincerely for your amazing work my good sir 👏

  • @Alexis-uo8jq
    @Alexis-uo8jq Před 3 měsíci

    amazing videos, definitely what I imagine how MIT professors teach like! Hopefully this dude is doing some good engineering in a good company!

  • @bvgm1835
    @bvgm1835 Před 3 lety

    Thank you so much!

  • @antiquarian1773
    @antiquarian1773 Před 3 lety

    What an absolute god. Thanks dude :)

  • @kmoydaye9866
    @kmoydaye9866 Před rokem

    Best video explanation on the topic.

  • @isharauditha4257
    @isharauditha4257 Před 2 lety

    it is so helpful thank you so much

  • @CuteAnimals-zi2cc
    @CuteAnimals-zi2cc Před 3 lety +2

    fabulous work brother

  • @falkelany6865
    @falkelany6865 Před 3 lety

    Thank you very
    it's very helpful 🌷

  • @couple_j
    @couple_j Před 5 měsíci

    Thankyou so muchh. Finally understood instantaneous velocity. U explained it better than most college prof.

  • @charlesfield9286
    @charlesfield9286 Před 9 měsíci

    fantastic! thanks

  • @EgeUyar
    @EgeUyar Před rokem

    Nice Job !

  • @engineeringlecturesandexpe3091

    Very well done ✅✅

  • @AhmadAryan2013
    @AhmadAryan2013 Před 6 měsíci

    Best ever lecture!!!!

  • @aseniyasanhinda2663
    @aseniyasanhinda2663 Před rokem

    Thank you very much!😘

  • @samuelbeer7587
    @samuelbeer7587 Před 3 lety +8

    Got an exam in 2 days and you may have just saved my degree, why my lecturers don't teach like this I will never know ahah

    • @QuestionSolutions
      @QuestionSolutions  Před 3 lety +2

      I wish you the absolute best on your exam. Do lots of practice questions and do your best! 👍

    • @QuestionSolutions
      @QuestionSolutions  Před 3 lety

      @Canadian Biscuit I don't know who that is 😅

    • @samuelbeer7587
      @samuelbeer7587 Před 3 lety

      @@QuestionSolutions Thank you! I got a First-Class, so i'm very pleased. Thank you very much for the truly amazing content you produce :)

    • @QuestionSolutions
      @QuestionSolutions  Před 3 lety

      @@samuelbeer7587 Glad to hear! Well done :)

  • @kyleweir9175
    @kyleweir9175 Před rokem

    thanks for the help

  • @Vicienzo_tfox
    @Vicienzo_tfox Před 3 lety

    Wow, that’s howesome, thanks!!

  • @md.akiduzzamanabir3815

    thank you so much

  • @tommyminahan3136
    @tommyminahan3136 Před rokem

    I tell everyone that I study with to go watch your videos lol keep it up!

  • @umiturgutaswwsa
    @umiturgutaswwsa Před rokem

    Nice explanation

  • @vindee
    @vindee Před 7 měsíci

    Bless you

  • @sterlingrawls
    @sterlingrawls Před rokem +1

    got an exam in 5 minutes! thanks so much

    • @QuestionSolutions
      @QuestionSolutions  Před rokem +2

      Best wishes with your exam! You got this.

    • @sterlingrawls
      @sterlingrawls Před rokem +1

      @@QuestionSolutions thanks exam went well and I’m so glad I looked at your video before my exam bc it was simple and easy to follow

    • @QuestionSolutions
      @QuestionSolutions  Před rokem +2

      @@sterlingrawls I am really happy to hear that! Keep up the great work and best wishes with your future endeavors.

  • @yusefhamzeh1022
    @yusefhamzeh1022 Před 3 lety

    you're a legend

  • @insi_gaming
    @insi_gaming Před 2 lety +1

    Bruh you making my life easier honestly 😂❤

  • @harisahmed1617
    @harisahmed1617 Před 2 lety

    So much helpful video..m💝💝 ...

  • @MashieMashie
    @MashieMashie Před 4 měsíci

    good channel💥💥💯

  • @user-ml7nt2sq9f
    @user-ml7nt2sq9f Před 3 lety

    you deserve more subscribers

  • @imrightandyourewrong6404

    Omg, perfect

  • @hassankhalil9184
    @hassankhalil9184 Před 2 lety +1

    Great video as always, quick question though, at 5:05 , why did we use r(B/IC) to solve for W(BC) in the equation VB = W(BC)*r(B/IC), why didnt we use the bar BC lengh of .5m instead of the r(B/IC) lengh?
    Also in this case when we use the equation relating the velocities at the instanteous center, VB = VA + W(BC)x(r(IC)) what would VA = 0 be in this moment? Like which linear velocity is that?

    • @QuestionSolutions
      @QuestionSolutions  Před 2 lety +3

      You canuse the 0.5 m if it's a simple rotation about a fixed axis. Here though, that's not the case. We have a fixed slot "C" and point B which is dependent on bar AB. When we calculate VB, you can think of it as bar BC disappearing, and you will see that bar AB going back and forth about point A. If we do the same for bar AB, and think of it disappearing, where does bar BC rotate about? It's dependent on the other bar so you have to use relative velocity or instantaneous center of zero velocity to figure it out.
      For this problem, you don't use VA, you would compare VB to VC to use relative velocity.

    • @hassankhalil9184
      @hassankhalil9184 Před 2 lety +1

      @@QuestionSolutions you are the best, I have watched other videos and it make total sense now, thanks for replying.

  • @programmingprograms726

    GOAT!!

  • @ericcabrera8239
    @ericcabrera8239 Před 9 měsíci

    Hello, Very Good video! Do you just assume the direction of the velocity arrow or is there something behind it?

    • @QuestionSolutions
      @QuestionSolutions  Před 9 měsíci

      You're just assuming. If you get a negative sign for your answer, then it's opposite to your assumption. But you can usually make a very good guess as to the direction just by visualizing how something moves.

  • @isaiahzerface4554
    @isaiahzerface4554 Před rokem

    Love the videos, saving my grade for real. I just don’t understand what the point of this method is though. Why couldnt we just use the relative velocity method for these problems?

    • @QuestionSolutions
      @QuestionSolutions  Před rokem +1

      Glad to hear you like these videos. To answer your question, it's just another method to get to the solution. Its better to know more than one way. 👍

  • @khonghieu6835
    @khonghieu6835 Před 2 dny

    I have a case where two IC Radial lines are parallel to each other and do not form a triangle. How should I handle it?

  • @krypton9773
    @krypton9773 Před 3 lety

    Thank you so much❤️❤️btw
    I've got a question,
    I have a problem comprehending the purport of this method.
    When we say we assume point A has no velocity, does it mean we assume it's fixed? If that's the case , in the previous method , we also assumed(as an example) point A is fixed but it was moving?
    And another thing is that:
    When is it allowable for us to use this method?

    • @QuestionSolutions
      @QuestionSolutions  Před 3 lety +4

      So you can use this method whenever enough information about the geometry of the problem is given. If you have a question where you need to find the velocity of a point and you're given distances and angles, use this method, it'll get you to an answer faster than using relative velocity. Also, keep in mind, this only works with velocity, not with acceleration. We aren't saying point A has no velocity, we are just ignoring it because we are using the instantaneous center of zero velocity point. So if you saw the previous video about relative velocity, we compared one point (point A), to another unknown point (point B), and figured out the velocity using a position vector from A to B. Here, instead of that, we use the IC point, so no position vector from A to B, and we can just forget about the velocity at point A. You can imagine a single object rotating about this IC point and that's really what's happening behind the scenes. Your textbook should give a more detailed analysis of this method along with the proof. 👍

    • @krypton9773
      @krypton9773 Před 3 lety +1

      @@QuestionSolutions THANK YOUUUU SOOOOO MUUUUCHHHH😭😭😭😭

    • @QuestionSolutions
      @QuestionSolutions  Před 3 lety +2

      @@krypton9773 You're welcomeeeeeeeeee 😅

  • @noobdev99
    @noobdev99 Před 3 lety +1

    Which software do you use for such amazing animations

  • @aryagultom6231
    @aryagultom6231 Před 2 lety

    hello, can you explain how to use absolute motion analysis for example “3:54

  • @kanhchanaly6445
    @kanhchanaly6445 Před 3 lety +2

    Hi sir, I have a question. At 6:04 should I always draw the radial line of IC towards the touching point of the two cylinders? Thank you.

    • @kanhchanaly6445
      @kanhchanaly6445 Před 3 lety +1

      I’m confused because when I’m doing other examples where the point of interest isn’t at the center of the circle, I don’t know which direction I should draw the radial IC line to, I hope you understand my question...

    • @QuestionSolutions
      @QuestionSolutions  Před 3 lety +3

      @@kanhchanaly6445 Yes, the IC point would be where the wheel makes contact. For example, if a wheel was rolling on the floor, the IC point would be straight down at the point where it touches the ground.

    • @kanhchanaly6445
      @kanhchanaly6445 Před 3 lety +1

      @@QuestionSolutions thank you so much!

    • @QuestionSolutions
      @QuestionSolutions  Před 3 lety

      @@kanhchanaly6445 You're very welcome!

  • @natalielow5455
    @natalielow5455 Před rokem

    Does instantaneous centre of velocity help to determine the direction of the angular velocity as well? because I solved one problem with both velocity dynamics and the ic method only to find that the velocity dynamics method gives a negative when the angular velocity is clockwise, but the ic method does not

    • @QuestionSolutions
      @QuestionSolutions  Před rokem

      So generally speaking, it does give the direction since you can see how the object would move. For example, looking at 3:39, we established that the angular velocity of BC would be counter-clockwise. You don't need the answer to tell you that since you can see and imagine the object moving in your head. You know the direction it has to go since these involve fixed axes. Also remember, we with this method, you're getting scalar values where as with, for example, relative velocity, you can get vector answers.

  • @omarbahgat5783
    @omarbahgat5783 Před 2 lety

    should not the vb @2:32 be in terms of I and j since we have an angle of 60 degrees and it is not flat surface?

  • @muhdsyafiq2978
    @muhdsyafiq2978 Před 9 měsíci

    how to choose when to use relative motion or instantaneous center? Or is both method applicable for the same type of question?

    • @QuestionSolutions
      @QuestionSolutions  Před 9 měsíci

      You can use whatever method you like to solve these problems. It's completely up to you. Sometimes, you won't have the givens to use the instantons center of zero velocity, in which case, you should use the relative motion analysis.

  • @Stutteringjohnfan2015
    @Stutteringjohnfan2015 Před 3 lety +1

    so for the first example, when we get the answer at 3:41, is this the angular velocity of the link about the IC or is it the angular velocity about either B or C?

    • @QuestionSolutions
      @QuestionSolutions  Před 3 lety +1

      This is the angular velocity of link BC. They are not separate entities, it's a single link. So we just name it link BC. Also, the IC point doesn't change the angular velocity of link BC (so we aren't saying it's about the IC point), it's just a different method to get the angular velocity instead of using relative velocity. I think, at least from your previous questions as well, you might be confusing linear velocity and angular velocity. You can calculate linear velocity at point B or C. When we say angular velocity of link BC, that is for the whole member. That is the angular velocity of the metal rod. 👍

    • @Stutteringjohnfan2015
      @Stutteringjohnfan2015 Před 3 lety +1

      @@QuestionSolutions oh ok, thanks!

    • @QuestionSolutions
      @QuestionSolutions  Před 3 lety +1

      @@Stutteringjohnfan2015 You're very welcome!

  • @clearflow7925
    @clearflow7925 Před 8 měsíci

    0:39 when do we use the vector formula and when do we use the scalar formula?

    • @QuestionSolutions
      @QuestionSolutions  Před 8 měsíci +1

      It depends on the question. If all your values are given in cartesian form, use a vector formulation, if you can easily solve it using scalar, use scalar. Both methods will give the same answer in the end.

    • @clearflow7925
      @clearflow7925 Před 8 měsíci

      @@QuestionSolutions ahhh make sense

  • @Anime2003fan
    @Anime2003fan Před 2 měsíci

    how is the instantaneous center form the start of the roll i dont understand plz tell me. in later examples

    • @QuestionSolutions
      @QuestionSolutions  Před 2 měsíci

      I don't know where you're referring to. Please use timestamps. Thanks!

  • @Rarddddd
    @Rarddddd Před 3 lety

    Can you make a video about velocity and acceleration polygons?

    • @QuestionSolutions
      @QuestionSolutions  Před 3 lety +1

      I will add it to my list, however, it probably won't get made for quite a while since it's going to be at the bottom 😅

    • @Rarddddd
      @Rarddddd Před 3 lety

      @@QuestionSolutions thank you sir. You're such a blessing.

  • @mariaalhijazeen4974
    @mariaalhijazeen4974 Před 2 měsíci

    Hi just wanted to ask
    Can you explain how we got this equation
    At 6:07

    • @QuestionSolutions
      @QuestionSolutions  Před 2 měsíci

      It is the same equation shown at 0:41. It is the scalar method of finding velocity using angular velocity and a length. So in a rotating circle, the velocity at the very edge is equal to the angular velocity multiplied by the radius.

  • @reynjoker
    @reynjoker Před 3 lety

    Can these problems be solved with the relative velocity method instead ?

    • @QuestionSolutions
      @QuestionSolutions  Před 3 lety +1

      Both methods can be used as long as you have the relevant givens. 👍

  • @talha3346
    @talha3346 Před rokem

    Can you explain why in case of rolling wheel on ground without slipping, it's linear velocity on it's circumference equals zero at the instant it contacts with the ground. I know in case of gears their linear velocities are equal when they are meshed, make sense but here it seems the velocity can't be zero when contact with ground it should be same as when not in contact with the ground. Kindly elaborate.

    • @QuestionSolutions
      @QuestionSolutions  Před rokem

      I think this deutsch.physics.ucsc.edu/6A/book/torque/node16.html explains it well, but your textbook should also include a very good explanation too.

    • @talha3346
      @talha3346 Před rokem

      I think I understand now, appreciate your response.

  • @BODYBUILDERS_AGAINST_FEMINISM

    i love you say it back

  • @sochimaumobi6622
    @sochimaumobi6622 Před 3 měsíci

    Really important question, why is Vb=(Wbc)(Rb/ic) and not Vb=(Wab)(Rb/ic) 3:28

    • @QuestionSolutions
      @QuestionSolutions  Před 3 měsíci +1

      So notice how we used the segment BC to calculate the IC point. Then we use the angular velocity of that piece to figure out the linear velocity. If you use AB to figure out the IC point, you'd use the angular velocity of AB.

  • @yashchoudhari1613
    @yashchoudhari1613 Před 3 lety +1

    how is wbi = wbc, since you took vb = wbc x rbi, shouldn't the formula be vb = wbi x rbi?

    • @QuestionSolutions
      @QuestionSolutions  Před 3 lety

      Please kindly give a time stamp so I know where you're referring to. Thanks!

  • @tonyn300
    @tonyn300 Před rokem

    3:25 i don't get this step at all. It's using angular velocity of BC but the r_(B/IC), can someone explain this to me? doesn't solving this equation give the angular velocity about the instantaneous center? Namely (omega_IC). Unless omega_IC=omega_BC, but I don't see how that's the case.

    • @QuestionSolutions
      @QuestionSolutions  Před rokem +1

      So the cool thing about this method is that by multiplying the angular velocity by the instantaneous center distance, you actually end up getting the velocity of the link. Remember that velocity is just angular velocity multiplied by the distance from the axis of rotation. Here, we are pretty much doing the same thing, but now, we are just imagining the rod rotating about the IC point. The proof for this should be in your textbook, (if not, a quick search should allow you to find it). Also, I think doing a few questions will allow you to visualize what's actually happening, and this technique will become really helpful in the future for some problems where going through the traditional method of relative velocity can be tedious.

  • @jaronnsigey515
    @jaronnsigey515 Před 2 lety

    in the equation, V_B = W_BC(r_B/IC), why are we using the angular velocity of BC (W_BC) ???

    • @QuestionSolutions
      @QuestionSolutions  Před 2 lety

      Please kindly provide a timestamp so I know where to look. Many thanks!

  • @adityapandey8096
    @adityapandey8096 Před 3 lety

    At 6:09 How do you know that y component of velocity of the point of contact of cylinders is zero.

    • @adityapandey8096
      @adityapandey8096 Před 3 lety

      basically you wanna say that the point of contact of cylinders has neither X nor y component of velocity basically zero velocity

    • @QuestionSolutions
      @QuestionSolutions  Před 3 lety

      Because velocity is tangent to the rod, so you can see the rod is straight upwards, which means velocity is horizontal, only has an x-component.

  • @padamyonjan5608
    @padamyonjan5608 Před 4 měsíci

    Could you please explain if the solution holds true if both cylinder are rotating. How to find IC?

    • @QuestionSolutions
      @QuestionSolutions  Před 4 měsíci

      It's hard to say without seeing a question. Did you ask your professor or TA in person?

    • @padamyonjan5608
      @padamyonjan5608 Před 4 měsíci

      @@QuestionSolutions I did seek for help. Could't get it through though. I feel ashamed for asking same question again so I'm looking for solution online.
      The picture can be found in google. The question goes like this if you could help.
      Gear A rotates counterclockwise with a constant angular velocity of Omega A=10rad/s, while arm DE rotates clockwise with an angular velocity of Omega DE =6rad/s and an angular acceleration of alpha DE =3rad/s2 . Determine the angular acceleration of gear B at the instant shown.
      I found the solution to this question online BUT I'm following your technique of IC and couldn't get the same answer. I'm wondering if both rotates then the way of finding IC changes.

  • @emilianojimenez8034
    @emilianojimenez8034 Před rokem

    why were you using scalar form instead of vector from in this video?

    • @QuestionSolutions
      @QuestionSolutions  Před rokem

      Because it's easier to use scalar with triangles and sine/cosine law.

  • @co4erol
    @co4erol Před 3 lety

    Thanks I like animations

  • @icu3545
    @icu3545 Před 2 lety

    3:35 . I don't understand how Wbc can be used in the formula Vb = Wbc * rb/ic. In other words how can Wbc be used to to calculate Vb, because point c is also moving right. So it doesn't really have a angular velocity. I am confused. Great vids btw !!

    • @QuestionSolutions
      @QuestionSolutions  Před 2 lety

      So what do you mean by "it doesn't really have a angular velocity?" Rod BC definitely has an angular velocity, otherwise, it wouldn't be moving. It fact, we even show it to have an angular velocity of 6.787 rad/s. So maybe I am not understanding what you are asking, or maybe you can rephrase the question? Point C will have a linear velocity, point B will have a linear velocity, and they will not be equal either. Let me know if that helps. 👍

    • @icu3545
      @icu3545 Před 2 lety

      @@QuestionSolutions Sorry for the confusement. Someone else asked a similar question which said, "in the equation, V_B = W_BC(r_B/IC), why are we using the angular velocity of BC (W_BC)"

    • @QuestionSolutions
      @QuestionSolutions  Před 2 lety +1

      @@icu3545 We use ω_BC because that's what we used for the perpendicular lines. We found the IC point using rod BC, so that's what we need to use. That's the whole point of this idea, it's to use the IC point related to a rod, and use that to figure out the velocity at any given point on the said rod. We can't use AB since we didn't find the IC point with respect to rod AB. Another way to think about this is to imagine rod BC rotating about the IC point. It might make it more clear that all we are doing is multiplying the distance from the IC point by the angular velocity of BC. Remember that in the scalar form, we can find the linear velocity by simply multiplying the distance from the axis of rotation to the point where we are finding the linear velocity, it's v=ωr. So all we do is just figure out this "rotation point" which is the IC point, then figure out the distance and multiply it by the angular velocity. Does that make sense? :)

    • @icu3545
      @icu3545 Před 2 lety +1

      @@QuestionSolutions Aha, I understand. Amazing explanation. Thank you so much sir!!!

    • @QuestionSolutions
      @QuestionSolutions  Před 2 lety +1

      @@icu3545 I am really happy to hear you understand it! Best wishes with your studies 👍

  • @Jaullesparacomisso
    @Jaullesparacomisso Před 3 měsíci

    how come rB/IC not the same as BA?

    • @QuestionSolutions
      @QuestionSolutions  Před 3 měsíci

      I don't know where you're referring to. Please use timestamps. Thanks!

  • @readbhagwatgeeta3810
    @readbhagwatgeeta3810 Před měsícem

    At 3:29 shouldn't that angular velocity be w(B, IC), because it is angular velocity of B w.r.t IC. Why we are writing it as w(B,C)?

    • @QuestionSolutions
      @QuestionSolutions  Před měsícem

      I am not sure I understand what you're asking. Are you asking about the notation being used?

    • @readbhagwatgeeta3810
      @readbhagwatgeeta3810 Před měsícem

      No not notation. I am asking whether at 3:29 it should be wBC or wB/IC. How wBC = wB/IC​@@QuestionSolutions

    • @QuestionSolutions
      @QuestionSolutions  Před měsícem

      @@readbhagwatgeeta3810 Where do you see wB/IC? You're just multiplying a distance labeled rB/IC by a variable labeled wBC. When you plug your values in, you get a solution for the variable wBC. I don't understand what you mean by "How wBC = wB/IC" where did we write that on the solution?

  • @nikunjpatil2074
    @nikunjpatil2074 Před 2 lety

    👍

  • @e-nes4042
    @e-nes4042 Před 2 lety

    3.40 why did we add Vc ? it is not fixed... it has velocity

    • @e-nes4042
      @e-nes4042 Před 2 lety

      aaa we got ıc so it is fixed but Wbc confused me

    • @QuestionSolutions
      @QuestionSolutions  Před 2 lety

      I don't see VC at 3:40? Please let me know where to look.

  • @edwardmouawad9443
    @edwardmouawad9443 Před 2 měsíci

    why rD/IC=3

    • @QuestionSolutions
      @QuestionSolutions  Před 2 měsíci

      I don't know where you're referring to. Please use timestamps. Thanks!

  • @ggxsky4811
    @ggxsky4811 Před 6 měsíci

    Do I need to watch previous videos before watching this

    • @QuestionSolutions
      @QuestionSolutions  Před 6 měsíci

      Best answer I can give is, watch it and see, if you find things unfamiliar, then watch the previous videos to help with your foundational knowledge.

  • @DietCokeIsGoodForYou
    @DietCokeIsGoodForYou Před 2 lety

    My professor making these problems so weird. instead of adding I j and k comments he draws entire pictures and puts them into equations lo

  • @isaac3055
    @isaac3055 Před 3 lety

    Stuff like this cannot be explained on a 2D whiteboard.