Integrátor
Integrátor
  • 30
  • 7 095
Matice není pouhá tabulka... | Animace
Video o vizualizaci matic. Dost lidí vnímá matice jako nehezké tabulky nebo zkrátka nějaká čísla v závorkách. Přitom matice má velmi zajímavý význam.
Nejdřív se podíváme, co je vektorový prostor a jak lze vizuálně ukázat, že je matice lineární zobrazení.
V poslední části videa se vysvětlí, jak lze interpretovat násobení matic.
Máš nějaké otázky? Piš do komentáře.
IG: integrator.math
Animace vytvořeny pomocí balíčku MANIM v Pythonu.
Music: www.purple-planet.com
Music used
Flow of Life by Jonny Easton
Link: czcams.com/video/dioI567ieEw/video.html
Vytvořeno pomocí CapCut.
zhlédnutí: 367

Video

Nejkrásnější rovnice všech dob 🔥 | Animace
zhlédnutí 2,9KPřed 21 dnem
Video o nejkrásnější rovnici matematiky. Eulerova identita neboli Eulerova rovnost neboli speciální případ Eulerovy rovnice. Nejdřív se podíváme, proč je tak zajímavá a unikátní. Jaké fundamentální konstanty obsahuje ( nula, jedna, pí, Eulerovo číslo a imaginární jednotka). Kde se tato rovnice vzala? Pomocí fyzikálního modelu a animací si ukážeme, jak lze Eulerovu identitu odvodit. IG: integrat...
Je Zlatý Řez Opravdu Všude?
zhlédnutí 624Před měsícem
Video popisuje, kde se zlatý řez (iracionální číslo, které je přibližně 1,618) vyskytuje. Příroda, architektura, lidské tělo apod. Vysvětluje matematické pozadí této zajímavé konstanty. Na závěr si pokládáme otázku, zda se zlatý řez vyskytuje opravdu všude. IG: integrator.math Doučování matematiky: doucovani.hadrbolec@gmail.com Matematické animace vytvořeny pomocí MANIM. Vytvořeno pomocí CapCut.
STATISTIKA - EP4 - Nezávislost
zhlédnutí 38Před 2 měsíci
Další epizoda, která se věnuje matematické statistice. Zaměříme se okrajově na nezávislost náhodných jevů a následně nezávislost náhodných veličin. Jaká je myšlenka nezávislosti a jak probíhá výpočet. IG: integrator.math Vytvořeno pomocí CapCut.
Integrál | Rozklad na parciální zlomky
zhlédnutí 112Před 2 měsíci
Toto video obsahuje výpočet integrálu, u kterého je potřeba provést rozklad na parciální zlomky IG: integrator.math Máš dotazy nebo připomínky? Napiš do komentáře. Máš zájem o doučování? Napiš na mail doucovani.hadrbolec@gmail.com Vytvořeno pomocí CapCut.
LIMITY - výpočet limit, u kterých je potřeba Eulerovo číslo
zhlédnutí 118Před 2 měsíci
Video představuje návod/postup, jak řešit limity, u kterých je potřeba využít definici Eulerova čísla e. Video pokrývá všechny možné triky na celkově pěti různých příkladech limit. Na závěr videa je i příklad na výpočet limity na procvičení. Napiš mi výsledek do komentáře. IG: integrator.math Vytvořeno pomocí CapCut.
STATISTIKA - EP3 - Rozdělení náhodných veličin
zhlédnutí 113Před 2 měsíci
Třetí epizoda série o matematické statistice. Toto video řeší popis, interpretaci, pravděpodobnostní funkci / hustotu a distribuční funkci u následujících diskrétních rozložení pravděpodobnosti: - Alternativní (Bernoulliho) - Binomické - Poissonovo - Geometrické - Negativně binomické Spojitá rozdělení pravděpodobnosti: - Rovnoměrné - Normální ( a standardizované normální) - Exponenciální - Chí ...
Jak udělat maturitu z matematiky, když jsi d*ment
zhlédnutí 182Před 3 měsíci
Odkaz na požadavky: maturita.cermat.cz/files/files/katalog-pozadavku/MA_Katalog_pozadavku_MZ_1718.pdf Maturita z matematiky se blíží. Z toho důvodu jsem vytvořil toto krátké stručné video, které shrnuje, co je potřeba si před samotným testem připravit a s čím počítat. Kdyby jsi měl další dotazy. Napiš komentář nebo na IG: integrator.math Vytvořeno pomocí CapCut.
Vyvaruj se těchto chyb!
zhlédnutí 101Před 3 měsíci
Video, které se věnuje dvou častým chybám v matematice. - Dosazování funkčních hodnot do funkce a posloupnosti. Tj. například f(5) nebo a_(n 1). - Dosazování při řešení systému lineárních rovnic IG: integrator.math Vytvořeno pomocí CapCut.
Integrál - per partes a substituční metoda - příklad
zhlédnutí 63Před 3 měsíci
Výpočet neurčitého integrálu, který obsahuje jak metodu per partes, tak substituční metodu. Máš nějaké dotazy/návrhy? Napiš do komentáře nebo na IG: integrator.math Vytvořeno pomocí CapCut.
STATISTIKA - EP2 - Distribuční funkce, pravděpodobnostní funkce a hustota
zhlédnutí 273Před 3 měsíci
Druhý díl série o pravděpodobnosti a statistiky se zaměří na vysvětlení distribuční funkce, pravděpodobnostní funkce a hustoty pravděpodobnosti. IG: integrator.math Máš nějaké dotazy nebo návrhy na další videa? Napiš do komentáře. Statistika rozhodně není nuda!!! Vytvořeno pomocí CapCut.
Najdi chybu - EP1
zhlédnutí 96Před 3 měsíci
Krátké video, které otestuje tvoji vnímavost a zda dokážeš najít chybu v matematických úpravách. IG: integrator.math #matematika #chyba #stredniskola #vzdělávání #vysokaskola Vytvořeno pomocí CapCut.
STATISTIKA - EP1 - Náhodná veličina
zhlédnutí 200Před 4 měsíci
První epizoda k sérii Statistika. Tato série bude obsahovat náhodné veličiny, různé typy rozdělení diskrétních i spojitých náhodných veličin, číselné charakteristiky (střední hodnota, rozptyl, kovariance, korelace, šikmost a špičatost), centrální limitní věta, zákon malých a velkých čísel, základy matematické statistiky, vlastnosti odhadů, bodové odhady, intervalové odhady (intervaly spolehlivo...
!!!!! Faktoriál !!!!!
zhlédnutí 66Před 4 měsíci
Vysvětlení definice faktoriálu a vypočítání dvou ukázkových příkladů! Ve videu je ukázáno několik triků s faktoriály jako je například krácení, vytýkání a obecně jejich úprava. IG: integrator.math #makematika #faktorial #vedomosti #maturita #soucin #stredniskola #skola #jak #pochopit Vytvořeno pomocí CupCat.
WEBOVÉ STRÁNKY, které ti pomůžou s matikou
zhlédnutí 137Před 5 měsíci
WEBOVÉ STRÁNKY, které ti pomůžou s matikou
LIMITY - trik pro limity jdoucí do nekonečna
zhlédnutí 134Před 5 měsíci
LIMITY - trik pro limity jdoucí do nekonečna
JAK BÝT VÍCE PRODUKTIVNÍ
zhlédnutí 25Před 5 měsíci
JAK BÝT VÍCE PRODUKTIVNÍ
JAK NAKRESLIT LIBOVOLNÝ GRAF - EP 3
zhlédnutí 94Před 6 měsíci
JAK NAKRESLIT LIBOVOLNÝ GRAF - EP 3
PER PARTES - Jak ušetřit čas
zhlédnutí 76Před 6 měsíci
PER PARTES - Jak ušetřit čas
DERIVACE - PRAKTICKY
zhlédnutí 101Před 6 měsíci
DERIVACE - PRAKTICKY
JAK NAKRESLIT LIBOVOLNÝ GRAF - EP 2
zhlédnutí 113Před 7 měsíci
JAK NAKRESLIT LIBOVOLNÝ GRAF - EP 2
JAK NAKRESLIT LIBOVOLNÝ GRAF - EP 1
zhlédnutí 482Před 7 měsíci
JAK NAKRESLIT LIBOVOLNÝ GRAF - EP 1
PRVNÍ KROK K BOHATSTVÍ - TRACKOVÁNÍ VÝDAJŮ
zhlédnutí 90Před 8 měsíci
PRVNÍ KROK K BOHATSTVÍ - TRACKOVÁNÍ VÝDAJŮ
JAK NAKRESLIT LIBOVOLNÝ GRAF - EP 0 - POSTUP
zhlédnutí 104Před 8 měsíci
JAK NAKRESLIT LIBOVOLNÝ GRAF - EP 0 - POSTUP
Boxplot - jednoduchá explorace dat
zhlédnutí 74Před 8 měsíci
Boxplot - jednoduchá explorace dat
Matice v (mate)matice 1/2
zhlédnutí 29Před 9 měsíci
Matice v (mate)matice 1/2
Proč je průměr na h***o
zhlédnutí 146Před 9 měsíci
Proč je průměr na h o
Dělení mnohočlenu mnohočlenem - BARVITĚ
zhlédnutí 65Před 10 měsíci
Dělení mnohočlenu mnohočlenem - BARVITĚ
JAK SE VŽDY PUSTIT DO PŘÍKLADU SPRÁVNĚ
zhlédnutí 136Před 10 měsíci
JAK SE VŽDY PUSTIT DO PŘÍKLADU SPRÁVNĚ

Komentáře

  • @pavelperina7629
    @pavelperina7629 Před dnem

    Ono to jde vysvětlit možná úplně jinak a animace v tom zas tak moc nepomůžou. Násobení matice vektorem je v podstatě vektor skalárních součinů řádků matice a vektoru samotného. První sloupec matice má pak význam jednotkový vektor x se transformuje na to co je zapsané v prvním sloupci, jednotkový vektor y se transformuje na vektor v druhém sloupci atd. Následně se všechno sečte. Takže ta matice jsou ... a teď doufám, že to nepíšu naopak ... bázové vektory nového souřadného systému zapsané v souřadnicích toho aktuálního. A skalární součin řádku matice s vektorem je v podstatě kolmá projekce vektoru na novou osu (no, asi to není úplně přesné, pokud řádek matice netvoří jednotkový vektor) A protože čtvercová matice obsahuje bázové vektory, tak násobení další maticí zleva je opět transformuje. Ale významem těch sloupců jsem si docela jistý, pak odpadá nutnost se učit jak vypadá matice pro rotaci nebo skosení a lze je napsat přímo, prostě si nakreslím nové bázové vektory. Je důležité brát v úvahu to, jestli se transformační matice používá v kombinaci s řádkovými nebo sloupcovými vektory.

  • @D_0ktor
    @D_0ktor Před 5 dny

    Super video, mám len dve poznámočky k animáciám: 1. Bolo by super, keby animácie boli vygenerované vo väčšej kvalite, hlavne nech majú viac obrázkov za sekundu. Budú tak hladšie a divákovi sa na to bude lepšie pozerať. V Manime by malo stačiť pri exporte namiesto -pql napísať -pqh. 2. Keď aplikuješ zobrazenie na celý priestor, stačilo by ho aplikovať len na smer a veľkosť vektora, ale nie na samotnú veľkosť šípky, ktorú my vidíme. V takom prípade by si sa vyhol tomu, že sa ti celá šípka stlačí na priamku a transformácie budú lepšie viditeľné. Inak všetko super, chcem vidieť, kam tento kanál dotiahneš. Má to veľký potenciál.

    • @Integrator-dd6gh
      @Integrator-dd6gh Před 4 dny

      Díky za užitečné rady. -pqh jsem zkusil a funguje. Na aplikaci zobrazení pouze na směr a velikost vektoru se ještě podívám a snad do dalšího videa doladím

  • @_cenobitax6129
    @_cenobitax6129 Před 9 dny

    a) Při derivaci se konstanta C nepřičítá, to se děje při integraci. b) První derivace polohy/dráhy není zrychlení, ale rychlost. c) Druhá derivace polohy/dráhy je zrychlení.

  • @D_0ktor
    @D_0ktor Před 16 dny

    Je super vidieť, že aj niekto ďalší na CZ/SK scéne používa Manim. Super video aj kanál, podporujem.

  • @pelikan211
    @pelikan211 Před 17 dny

    Eulerova rovnost má ještě jednu výjimečnost. Obsahuje VŠECHNY základní algebraické operace. Tedy sčítání, násobení a umocňování. A každé jen jednou. Úpravou této rovnice dostáváte navíc odčítání, dělení i odmocňování. Osobně považuji tuto rovnost za jakýsi velký třesk v matematice, neboť obsahuje v souladu ÚPLNĚ VŠE, co matematika používá. Odsud se sčítáním a jedničkou rodí přirozená čísla, pomocí mínusu i celá a tak dále až po odmocňování a tedy iracionální čísla. Jednoduše řečeno - kdyby měl dílenský mistr k dispozici pouze tato nářadí, tedy konstanty {0,1,e,pi,i) a operace (+,x,^), může vytvořit KOMPLETNĚ CELOU NÁM ZNÁMOU MATEMATIKU. A vlastně i tu, kterou ještě neznáme. :)

  • @josefdusek9646
    @josefdusek9646 Před 18 dny

    PLETE SI RYCHLOST SE ZRYCHLENÍM! Rychlost je 1.derivací polohy dle času a zrychlení je 2. derivací polohy dle času. Navíc platí Eulerův vzorec: e^ix = cos(x) + i sin(x), (který dostaneme z Taylorova rozvoje), jehož speciálním případem pro x = Pí je e^iPí = cos(Pí) + i sin(Pí) = -1 + 0i = -1.

  • @jankelbich4605
    @jankelbich4605 Před 18 dny

    Upřímně řečeno, odvozeno to nebylo vůbec. Normalně se to dělá buď pomocí Taylorových řad, nebo taky derivací výrazu e^-x*(cos(x)+i*sin(x)) podle x.

    • @stanislavbrozek7961
      @stanislavbrozek7961 Před 17 dny

      Přesně takoví rejpalové dělají běžným lidem z matematiky horor, namísto toho, aby jim ukázali její krásu a odvozování nechali na chvíli, kdy to intuitivně chápou.

  • @afrosirka
    @afrosirka Před 19 dny

  • @Wolk3r
    @Wolk3r Před 23 dny

    Naprosto perfektně a krásně vysvětlené :)

    • @_cenobitax6129
      @_cenobitax6129 Před 9 dny

      až na několik chyb

    • @Wolk3r
      @Wolk3r Před 9 dny

      @@_cenobitax6129 ano, ale ty jsou dovysvetlene v komentářích, tak jsem se rozhodl mu je odpustit :D

  • @MynecraftCZ
    @MynecraftCZ Před 23 dny

    derivace polohy je rychlost, ne zrychlení.

  • @petrsperka
    @petrsperka Před 25 dny

    Rovnice to je pěkná! Derivace pozice je rychlost. Druhá derivace by vedla ke zrychlení. To na věci nic nemění.

  • @tyapca7
    @tyapca7 Před 25 dny

    1:54: +c?

    • @lubos4639
      @lubos4639 Před 24 dny

      No ne. To by bylo pri integrovani.

    • @tyapca7
      @tyapca7 Před 23 dny

      ​@@lubos4639Já vím. Snad jsem ještě (úplně) nezblbnul.

    • @Integrator-dd6gh
      @Integrator-dd6gh Před 23 dny

      Díky za upozornění na chybu. Žádný +c tam nemá být. Jsem si na okamžik myslel, že integruji (pravděpodobně kvůli tomu, že derivování i integrování e^x vyjde nastejno :D )

  • @jenda9502
    @jenda9502 Před 25 dny

    Hezky zpracované. Rád si opráším znalosti ze školy. Doporučuji do náhledovek dávat více spoře oděných žen...:D

  • @FranKTaNE
    @FranKTaNE Před 25 dny

    Souhlasím. Tuhle rovnici miluju. ❤.

  • @sodlarek9366
    @sodlarek9366 Před měsícem

    Moc pěkné video

  • @danielsojak
    @danielsojak Před 2 měsíci

    super video:)

  • @sodlarek9366
    @sodlarek9366 Před 2 měsíci

    Miluji kalkulus. včetně integrálů, kde je potřeba rozkládat na parciální zlomky, protože u toho člověk potrénuje mnoho věcí z matematiky, obzvláště pokud to budeme řešit v určitém integrálu, ale samozřejmě je to už asi složitější koncept než jenom sčítání a odčítání :D. A právě je super, že jsou tady takováto videa, která to dokážou krásně a jednoduše vysvětlit. Skvělá práce :)

    • @Integrator-dd6gh
      @Integrator-dd6gh Před 2 měsíci

      Dík. Příklady, k jejichž vyřešení potřebuješ vícero oblastí matematiky, mám taky rád. Takže věř, že toto není poslední video tohoto typu

  • @tgx3529
    @tgx3529 Před 2 měsíci

    A kde máš podmínky řešení? Mám Nya mysli intervaly pro které tento integrál konverguje.

    • @Integrator-dd6gh
      @Integrator-dd6gh Před 2 měsíci

      Díky za připomínku. Zadání, ze kterého jsem daný integrál čerpal, vyžadovalo pouhý výpočet bez určení podmínek. Upřímně bych si na to ani netroufl

  • @sodlarek9366
    @sodlarek9366 Před 2 měsíci

    Super video jako vždy, ale chci se zeptat jestli se tam musí pokaždé psát ,,n" a jestli by nešlo použít třeba ,,x" mě osobně to vyhovuje více. sice to výpočet nijak nezmění, ale vždycky jsem se u definice ,,e" setkal s tím ,,n", ale u ostatních limit se používají normálně ,,x" ... snad můj dotaz dává smysl. Děkuji za odpověď

    • @Integrator-dd6gh
      @Integrator-dd6gh Před 2 měsíci

      Čus, díky. Jak jsi sám psal, výsledky to neovlivní. U těchto limit se píše ze zvyku n, jelikož samotná definice Eulerova čísla e je limita POSLOUPNOSTI a argument posloupnosti se skoro všude značí n. Takže se pak píše n i do zadání příkladů, aby značení bylo konzistentní s definicí Eulerova čísla a aplikace vzorce byla pro řešitele snadnější.

    • @tgx3529
      @tgx3529 Před 2 měsíci

      Pochopitelně i s funkcí se můžete setkat. Ono je to ve skutečnosti strašně jednoduché. Stačí si uvědomit, že ln(1+x) se chová na okolí nuly jako x, takže lim ln(1+x)/x=1 pro x-->0, stačí využít lim exp( ln( zadaný výraz))

  • @jakubzizkovsky5995
    @jakubzizkovsky5995 Před 2 měsíci

    Zdravím, smím se prosím zeptat, jaký je rozdíl mezi Hypergeometrickým a Geometrickým rozdělením? Chápu dobře, že Hypergeometrické je spojité, zatímco geometrické je diskrétní? Z různých online zdrojů se mi úplně nepodařilo zjistit přesný rozdíl, tak bych velice ocenil radu někoho kdo tomu rozumí:) Předem děkuji

    • @Integrator-dd6gh
      @Integrator-dd6gh Před 2 měsíci

      Čus, Geometrické i Hypergeometrické rozdělení je diskrétní! Geometrické určuje počet neúspěchů před prvním pokusem. Hypergeometrické se dá dobře představit z příkladu, kde vybíráme BEZ VRACENÍ n koulí. N je celkový počet koulí, z toho je K koulí bílých a (N-K) černých. Náhodná veličina, která se řídí hypergeometrickým rozdělením určuje počet bílých koulí mezi n vybranými. Hypergeometrické má tři parametry a to N,K a n. Zajímavostí je, že má hypergeometrické rozdělení blíže k binomickému než geometrickému. Pokud se parametry N a K pošlou do nekonečna, tak obdržíme Binomické rozdělení. Tento výsledek lze komentovat tak, že pokud taháme z obrovských souborů, tak příliš nezáleží na tom, zda po tahu vybranou věc vracíme či nevracíme. Mé osobní shrnutí. Tyto rozdělení mají společný to, že jsou diskrétní a skoro stejné jméno. Jinak spolu více nesouvisí.

    • @jakubzizkovsky5995
      @jakubzizkovsky5995 Před měsícem

      @@Integrator-dd6gh Děkuji moc za vysvětlení, hodně pomohlo!:)

  • @tgx3529
    @tgx3529 Před 3 měsíci

    Distribuční funkce může být definována i jako zleva spojitá, pak by tam bylo P(X<x). To záleží na konkrétním vyučujícím. Nejlepší ve škole bylo, když to každý učil jinak. Myslím že to záleží na tom,zda teorie je z Ruska či z Ameriky. V podstatě se zde jedná o Lebesgovy integrály, hustota je nezáporná borelovské měřitelná funkce. Prostřednictvím Radon Nikodémovy derivace se převede Stieltgesův integrál na Lebesgův. Ona ta univerzální definice pro spojitý i diskrétní případ je vlastně integrál dF(x), u spojitých případů tam vzniká integrál (dF(x)/d(x))dx, ta() je vlastně ta hustota, proto je integrál z hustoty na intervalu ( a,b) rozdíl těch distribučních funkcí v těch bodech., aspoň jak si to ještě pamatují.

    • @Integrator-dd6gh
      @Integrator-dd6gh Před 3 měsíci

      Super připomínka. O definici distribuční funkce jako P(X<x) jsem slyšel, ale nikdy se s ní v praxi nesetkal (asi čtu spíše americké články :) ). Ne u všech témat jsem dostatečně zběhlý, abych mohl předat. Přemýšlel jsem však, že udělám časem video o R-N derivaci a o singulárním typu rozdělení

  • @tgx3529
    @tgx3529 Před 4 měsíci

    Já jsem se vlastně s faktoriálem záporného čísla setkala ve statistice u negativně binomického rozdělení, kde se interpretuje v literatuře N+k-1 nad k prostřednictvím (-N nad k)*(-1)^k myslím, nebo tak nějak. K tomu je právě zapotřebí ten faktoriál záporného čísla. Ono jde vlastně o konvencí. On faktoriál je speciální případ vlastně Gamma funkce, tam je to definováno pro reálná čísla.

  • @tgx3529
    @tgx3529 Před 4 měsíci

    Dobrý den, trochu mě zarazila definice náhodné veličiny v 10:05. Myslela jsem , už si to možná špatně pamatuji???, že náhodná veličina je MĚŘITELNÉ zobrazení z pravděpodobnostního prostoru do (R, B). Vy tam mluvíte o zobrazení jevu jako takového, jenže , měřitelné zobrazení zajišťuje, že vzor měřitelné množiny je měřitelná množina. Jev jako takový sám o sobě není měřitelný, jak i sám uvádíte, právě proto mi dává logiku, že jde o zobrazení z toho pravděpodobnostního prostoru, ten už to zajišťuje, právě proto je jeho součástí ta pravděpodobnost, aspoň já to tak chápu.

    • @Integrator-dd6gh
      @Integrator-dd6gh Před 4 měsíci

      Zdravím. Náhodná veličina je zobrazení z prostoru elementárních jevů do reálných čísel X: Omega -> R. Podmínka X^(-1) (B) náleží A pro všechny borelovské množiny zajišťuje měřitelnost zobrazení, takže si pamatujete správně. Podmínka vlastně zajišťuje, že pro libovolnou borelovskou množinu je pravděpodobnost P(X náleží B) vůbec definována. Konkrétně je náhodná veličina borelovsky měřitelná, což se v nějaké literatuře značí X: (Omega, A) -> (R, B). Někde se dokonce samotné zobrazení značí jako X: (Omega, A, P) -> (R,B, mu), kde mu je Lebesgueova - Stieltjesova míra pro kterou platí mu(A) = P(X náleží A). Je to hodně o značení. Při samotném definování náhodné veličiny je potřeba pravděpodobnostní prostor (Omega, A, P), takže tvrzení, že zobrazení je vlastně z pravděpodobnostního prostoru, by se určitě dalo říci. Děkuji za doplnění a doufám, že jsem na vše odpověděl.

    • @tgx3529
      @tgx3529 Před 4 měsíci

      Děkuji za odpověď , hledala jsem v tom svou logiku věci jen.@@Integrator-dd6gh

  • @sodlarek9366
    @sodlarek9366 Před 5 měsíci

    Fajn videa Fajn youtube kanál určitě mám plán na dnešní večer (všechno zkouknout) a budu se těšit na další videa :)

  • @afrosirka
    @afrosirka Před 5 měsíci

    Dobrej trik, to jsem neznal

  • @afrosirka
    @afrosirka Před 7 měsíci

    Vic finančních videí

  • @jakubjezek6948
    @jakubjezek6948 Před 8 měsíci

    f(x)=(0.9^x)*cos((3^x)*pi)

  • @jakubjezek6948
    @jakubjezek6948 Před 10 měsíci

    x^2-2x+1

  • @jakubjezek6948
    @jakubjezek6948 Před 10 měsíci

    (ab)/(a-b)

  • @afrosirka
    @afrosirka Před 10 měsíci

    ab/a-b