owl3
owl3
  • 167
  • 159 249
Feynman's trick is the MOST POWERFUL FORCE in the universe BY FAR
Check out my other channel OWLS MATH!
czcams.com/channels/artWliFdki6px-57oVh6VA.html
Check out my other channel OWLS SCHOOL OF MATH!
czcams.com/channels/AJaLg-yEcvhC_ggEr0Hl6g.html
Integral practice:
owlsmath.neocities.org/integrals.html
Website:
owlsmath.neocities.org
#math
#integrals
#integrationtechniques
zhlédnutí: 476

Video

Forcing the Weierstrass to happen
zhlédnutí 552Před 4 hodinami
Weierstrass Substitution Intro video: czcams.com/video/0D3VLR8Fg6g/video.html&ab_channel=OwlsSchoolofMath Intro video: czcams.com/video/quMwAUJzLTY/video.html&ab_channel=OwlsMath Example problem: czcams.com/video/rZkcobgdWFM/video.html&ab_channel=OwlsSchoolofMath Quiz: owlsmath.neocities.org/Weierstrass Substitution/integral Formulas: owlsmath.neocities.org/Trig Identities and Formulas/trig ide...
Hint: the answer might contain 2024
zhlédnutí 367Před 12 hodinami
Here's the related video I mentioned at the beginning: czcams.com/video/D5kwCC_Pa9A/video.html Check out my other channel OWLS MATH! czcams.com/channels/artWliFdki6px-57oVh6VA.html Check out my other channel OWLS SCHOOL OF MATH! czcams.com/channels/AJaLg-yEcvhC_ggEr0Hl6g.html Integral practice: owlsmath.neocities.org/integrals.html Website: owlsmath.neocities.org #math #integrals #integrationte...
I wanted to use the Standup Maths method but I was delusional
zhlédnutí 1,2KPřed 16 hodinami
Derivation of the formula for reducing the bounds: czcams.com/video/MZw5CKWbx_0/video.html I have no idea if pi^pi^pi^pi is an integer I have no idea how I could even relate that to this integral but it's fun to wish I could somehow use it on this problem! czcams.com/video/BdHFLfv-ThQ/video.htmlsi=mj1J7aEy-rkSsHw_ Check out my other channel OWLS MATH! czcams.com/channels/artWliFdki6px-57oVh6VA....
Can I turn this into an integral???
zhlédnutí 3,1KPřed 21 hodinou
Website: owlsmath.neocities.org Check out my other channel OWLS MATH! czcams.com/channels/artWliFdki6px-57oVh6VA.html Check out my other channel OWLS SCHOOL OF MATH! czcams.com/channels/AJaLg-yEcvhC_ggEr0Hl6g.html #math #mathcompetition
The most time I EVER spent on a thumbnail and it still looks weird!
zhlédnutí 2KPřed dnem
Check out my other channel OWLS MATH! czcams.com/channels/artWliFdki6px-57oVh6VA.html Check out my other channel OWLS SCHOOL OF MATH! czcams.com/channels/AJaLg-yEcvhC_ggEr0Hl6g.html Practice problems: owlsmath.neocities.org/integrals.html Website: owlsmath.neocities.org #math #integrals #integrationtechniques
Short Method vs Long Method
zhlédnutí 1,8KPřed 14 dny
Check out my other channel OWLS MATH! czcams.com/channels/artWliFdki6px-57oVh6VA.html Check out my other channel OWLS SCHOOL OF MATH! czcams.com/channels/AJaLg-yEcvhC_ggEr0Hl6g.html Practice integrals with King's Principle: owlsmath.neocities.org/King's Rule Integrals/king Website: owlsmath.neocities.org #math #integrals #integrationtechniques
Can we do this with a Laplace Transform???
zhlédnutí 563Před 14 dny
Here's the original video without Laplace Transforms: czcams.com/video/Lf4sAJfO8eA/video.html Laplace Transforms playlist: czcams.com/play/PLOvxeHw2nLaySIKdV-QTjiGHHkOx0M_2-.html Practice problems: owlsmath.neocities.org/Laplace 101/laplace owlsmath.neocities.org/Inverse Laplace 101/laplace owlsmath.neocities.org/Laplace Cheat Sheet/laplace cheat sheet Website: owlsmath.neocities.org Check out ...
From the book "Inside Interesting Integrals"
zhlédnutí 559Před 14 dny
Check out my other channel OWLS MATH! czcams.com/channels/artWliFdki6px-57oVh6VA.html Check out my other channel OWLS SCHOOL OF MATH! czcams.com/channels/AJaLg-yEcvhC_ggEr0Hl6g.html Practice integrals with King's Principle: owlsmath.neocities.org/King's Rule Integrals/king Website: owlsmath.neocities.org #math #integrals #integrationtechniques
King's Principle is less than ideal on this one
zhlédnutí 724Před 14 dny
Check out my other channel OWLS MATH! czcams.com/channels/artWliFdki6px-57oVh6VA.html Check out my other channel OWLS SCHOOL OF MATH! czcams.com/channels/AJaLg-yEcvhC_ggEr0Hl6g.html practice integrals with King's principle: owlsmath.neocities.org/King's Rule Integrals/king Website: owlsmath.neocities.org #math #integrals #integrationtechniques
General form of Serret's integral
zhlédnutí 861Před 21 dnem
Check out my other channel OWLS MATH! czcams.com/channels/artWliFdki6px-57oVh6VA.html Check out my other channel OWLS SCHOOL OF MATH! czcams.com/channels/AJaLg-yEcvhC_ggEr0Hl6g.html More on Gamma function: czcams.com/play/PLZza5ZCDgQWxWCjhPQ-rvTgS0LGJYBpRQ.html Practice problems: owlsmath.neocities.org/Gamma Quiz/gamma Website: owlsmath.neocities.org #math #integrals #integrationtechniques
Is this IMPOSSIBLE???
zhlédnutí 2,8KPřed 21 dnem
Check out my other channel OWLS MATH! czcams.com/channels/artWliFdki6px-57oVh6VA.html Check out my other channel OWLS SCHOOL OF MATH! czcams.com/channels/AJaLg-yEcvhC_ggEr0Hl6g.html Practice integrals with King's Principle: owlsmath.neocities.org/King's Rule Integrals/king Website: owlsmath.neocities.org #math #integrals #integrationtechniques
You don't need a dx when evaluating limits :)
zhlédnutí 598Před 21 dnem
Some practice problems for YOU: owlsmath.neocities.org/Limits Quiz/limits owlsmath.neocities.org/Limits Quiz 2/limit owlsmath.neocities.org/L'Hopitals Rule/lhopitals owlsmath.neocities.org/Delta Epsilon Limits/deltaEpsilon Website: owlsmath.neocities.org Check out my other channel OWLS MATH! czcams.com/channels/artWliFdki6px-57oVh6VA.html Check out my other channel OWLS SCHOOL OF MATH! czcams.c...
Why not use 2024 on the exponent???
zhlédnutí 1,3KPřed 28 dny
UK integration Bee: integration.soc.srcf.net/ Check out my other channel OWLS MATH! czcams.com/channels/artWliFdki6px-57oVh6VA.html Check out my other channel OWLS SCHOOL OF MATH! czcams.com/channels/AJaLg-yEcvhC_ggEr0Hl6g.html Practice problems: owlsmath.neocities.org/integrals.html Website: owlsmath.neocities.org #math #integrals #integrationtechniques
Revisiting this variation on the Dirichlet Kernel
zhlédnutí 555Před 28 dny
Original video: czcams.com/video/nNio8dX4UlY/video.html Another one using this method: czcams.com/video/k2mv9O8qprg/video.html Check out my other channel OWLS MATH! czcams.com/channels/artWliFdki6px-57oVh6VA.html Check out my other channel OWLS SCHOOL OF MATH! czcams.com/channels/AJaLg-yEcvhC_ggEr0Hl6g.html Practice problems: owlsmath.neocities.org/Dirichlet Kernel/dirichlet Website: owlsmath.n...
Nice general formula!
zhlédnutí 1,3KPřed měsícem
Nice general formula!
UK Integration Bee 2024 #4
zhlédnutí 856Před měsícem
UK Integration Bee 2024 #4
I learned a new way to do this one!
zhlédnutí 1,3KPřed měsícem
I learned a new way to do this one!
Grueling problem. Satisfying solution.
zhlédnutí 3,6KPřed měsícem
Grueling problem. Satisfying solution.
I always forget this formula
zhlédnutí 466Před měsícem
I always forget this formula
I couldn't decide which Integration Bee I was working on!
zhlédnutí 1,8KPřed měsícem
I couldn't decide which Integration Bee I was working on!
fun random integrals & I can't think of a title
zhlédnutí 745Před měsícem
fun random integrals & I can't think of a title
UK Integration Bee Sample #11 (Alternative Method from adandap)
zhlédnutí 1,8KPřed měsícem
UK Integration Bee Sample #11 (Alternative Method from adandap)
Bernoulli's integral has a few tricky things going on
zhlédnutí 16KPřed měsícem
Bernoulli's integral has a few tricky things going on
Almost the Gaussian integral?
zhlédnutí 1,7KPřed měsícem
Almost the Gaussian integral?
Vienna Integration Bee 2024 #14
zhlédnutí 663Před měsícem
Vienna Integration Bee 2024 #14
UK Integration Bee Sample #2
zhlédnutí 1KPřed měsícem
UK Integration Bee Sample #2
Laplace Transform of f(t) over t
zhlédnutí 364Před měsícem
Laplace Transform of f(t) over t
Alternative Method: SwinBee 2019 #12
zhlédnutí 432Před 2 měsíci
Alternative Method: SwinBee 2019 #12
Laplace Transform of cosh(at)
zhlédnutí 242Před 2 měsíci
Laplace Transform of cosh(at)

Komentáře

  • @maxvangulik1988
    @maxvangulik1988 Před 14 hodinami

    floor(-2024pi)=-floor(2024pi)-1 I=int[-2024pi,ceil(-2024pi)](floor(x))dx (everything else cancels) width=ceil(-2024pi)+2024pi height=floor(-2024pi) I=floor(-2024pi)•(ceil(-2024pi)+2024pi) I=({2024pi}-1)•floor(-2024pi)

  • @maxvangulik1988
    @maxvangulik1988 Před 15 hodinami

    I=int[0,♾️](int[1,pi](1/(1+a^2•x^2))da)dx I=int[1,pi](int[0,♾️](1/(1+a^2•x^2))dx)da I=int[1,pi](pi/2a)da I=pi/2•ln(pi)

  • @adandap
    @adandap Před 16 hodinami

    This is another of those problems where looking at it as two integrals you end up with the difference of two logarithmically divergent expressions. You can see that there's a problem if you put u = pi x in the first one, which transforms it into the second, giving zero. Since arctan(pi x) > arctan (x) for all x in [0, pi/2] that clearly can't be right. The problem is that the terms in the integrand both tend to pi/(2x) for large x, hence the divergence. So I tried writing y = arctan(a x) - arctan(x), so tan(y) = x(1-a)/(1 + a x^2) so the integrand becomes 1/x arctan(x(1-a)/(1 + a x^2) ). I couldn't do much with that, but it's clear that it's convergent, since the large x behaviour ~ 1/x arctan( (1-a)/(a x) ) ~ 1/x^2 * (1-a)/a. Then I gave up and used the Feynman thingy as the title suggested. ☺

    • @owl3math
      @owl3math Před 11 hodinami

      😂 Feynman thingy. Interesting stuff!

  • @Samir-zb3xk
    @Samir-zb3xk Před 16 hodinami

    Fastest way: (i think) use king's symmetry property to switch sin to cos then use identity 1+cos(x)=2cos²(x/2) so then we get 1/2 (0 to π/2) ∫ sec²(x/2) dx which easily integrates to tan(x/2) then applying bounds gives us tan(π/4) - tan(0) = 1

    • @owl3math
      @owl3math Před 11 hodinami

      Like it! Yeah good method. 👍

  • @cobalius
    @cobalius Před 18 hodinami

    dude, i was just visualizing the thing and approximated it to be between 0.4 and 0.5 as a wild guess. what a lucky shot

    • @owl3math
      @owl3math Před 18 hodinami

      cool. I think we should approximate integrals more often!

  • @ashotdjrbashian9606
    @ashotdjrbashian9606 Před 19 hodinami

    This is actually an integral first evaluated by Euler about 275 years ago, if not more. All you have to do is a substitution x=2t and no other principles are necessary. For people who suggested any other methods (such as by parts), I have to disappoint you, this function does not have elementary antiderivative.

  • @jackkalver4644
    @jackkalver4644 Před 20 hodinami

    I learned another approach using a double integral. Use x<=y<=πx as the interval and tan(y)/x as the integrand.

    • @owl3math
      @owl3math Před 19 hodinami

      That makes sense. Good way 👍

  • @txikitofandango
    @txikitofandango Před 21 hodinou

    I see a hyperbolic claim about the effectiveness of Feynman's trick, I click

    • @owl3math
      @owl3math Před 21 hodinou

      🤣🤣🤣 Yeah i think all previous claims for the power of Feynman trick have been understated

    • @txikitofandango
      @txikitofandango Před 21 hodinou

      @@owl3mathtrue

    • @MikeT10101
      @MikeT10101 Před 20 hodinami

      ​@@txikitofandangoThe entire universe hinges on Feynman's trick. Without it we are toast.

    • @heinrich.hitzinger
      @heinrich.hitzinger Před 20 minutami

      ​@@MikeT10101Feynman: 🤫🧏‍♂️

  • @Ni999
    @Ni999 Před dnem

    It's also the same as the integral of sinx / (1 + cosx) And you can do that in your head to get ln( 1 + cos(π/3)) = ln( 3/2) Still with you almost daily, keep up the great work, you're nailing it! 😊👍

    • @Ni999
      @Ni999 Před dnem

      PS - as always, the alternative is just to take up space so the algorithm sees engagement and is not a suggestion for doing it that way. 😉😊

    • @owl3math
      @owl3math Před dnem

      Hey @Ni999! It's been a while and I was wondering if you were still watching :) Glad to hear you are. Thanks as always for the support!

    • @Ni999
      @Ni999 Před 23 hodinami

      @@owl3math You're welcome!

  • @jasonkishore3400
    @jasonkishore3400 Před dnem

    Just finished vector calculus and linear algebra. What in the world is the floor function

    • @owl3math
      @owl3math Před dnem

      basically it rounds down to the next greatest integer. Floor(3.87232) = 3 Floor(3) = 3 Floor(-2.1) = -3

    • @jasonkishore3400
      @jasonkishore3400 Před dnem

      @@owl3math what are it’s applications?

  • @MikeT10101
    @MikeT10101 Před 2 dny

    I enjoyed that. I've liked Weierstrasse substitution since I first learned about it.

    • @owl3math
      @owl3math Před 2 dny

      Hey Mike :) Thanks! Yeah I like doing these. I've probably done too many Weierstrass videos but I like it 🤣 Anyway probably going for something different in the next video.

  • @algoboi
    @algoboi Před 2 dny

    Why not use the half angle formulas? 1-cos(x) = 2(sin(x/2))^2 sin(x) = 2sin(x/2)cos(x/2) The integrand becomes tan(x/2).

    • @owl3math
      @owl3math Před 2 dny

      You can and it's faster that way! I think I said that in the video? Anyway multiple ways will work for this one :) thanks

    • @thegiganerd395
      @thegiganerd395 Před dnem

      Yep that's exactly what I did

  • @adandap
    @adandap Před 4 dny

    I kept getting myself confused with the bounds until I drew a number line and marked various points, setting floor(2024 pi) = N. Then it was easy enough to calculate the three contributions.

    • @owl3math
      @owl3math Před 4 dny

      Hi adandap. Yep kind of some basic book keeping here. Kind of cool how everything cancels! Not sure I’ll remember this as a formula however that you always get the lower bound as the answer.

  • @owl3math
    @owl3math Před 4 dny

    Here is the link to that previous video where I looked at the case with integer bounds and bounds going to infinity: czcams.com/video/D5kwCC_Pa9A/video.html

  • @taterpun6211
    @taterpun6211 Před 5 dny

    The sum can be represented in terms of the digamma function: S = -1/3Σ1/k - 1/(k+1/3) = -γ/3 - 1/3(-γ + Σ1/k - 1/(k+4/3-1)) = -1/3(ѱ(4/3) + γ) = -1/3(ѱ(1/3) + γ) - 1 By multiplication formula (z=1/3, k=3): ѱ(1/3) + ѱ(2/3) + ѱ(1) = 3(ѱ(1) - ln3) ѱ(1/3) + ѱ(2/3) = -2γ - 3ln(3) By reflection formula (z=1/3): ѱ(2/3) - ѱ(1/3) = πcot(π/3) = π/√3 So we have the linear relation: ѱ(1/3) + ѱ(2/3) = -2γ - 3ln(3) ѱ(2/3) - ѱ(1/3) = π/√3 ѱ(1/3) = -γ - 3ln(3)/2 - π/2√3 Hence S = ln(3)/2 + π/6√3 - 1 Alternatively you can use the Gauss digamma theorem

  • @holyshit922
    @holyshit922 Před 6 dny

    Integration by parts with u=arctan(x) , dv = 1/x^2 dx if we want to use numerical integration use substitution u = 1/x and equality arctan(x)+arctan(1/x) = pi/2 , for x > 0

  • @froggggggggggggggggggg

    俺やったら出されても解けんな…

  • @kingjamesfmvp
    @kingjamesfmvp Před 6 dny

    Beautiful!

  • @mashalrazavi579
    @mashalrazavi579 Před 7 dny

    A nice integral Thank you so much

  • @ravirajshelar250
    @ravirajshelar250 Před 7 dny

    I did not see the limits in the thumbnail😢 and was solving the indefinite integral, I finally came to a point where I got the integral of (xcosx)^(-1), I am pretty sure this is unsolvable. If anyone knows how to solve please help😅

    • @owl3math
      @owl3math Před 7 dny

      😮 this one seems difficult as an indefinite integral!

    • @ravirajshelar250
      @ravirajshelar250 Před 7 dny

      ​@owl3math yeah, that's why I expressed sinx in polar form.

  • @markgraham2312
    @markgraham2312 Před 7 dny

    It equals approximately -0.14839396162690884587003100526504 .

  • @clifforddevoe530
    @clifforddevoe530 Před 7 dny

    😭😭WOW, THAT WAS BRILLIANT SIR❤❤

    • @owl3math
      @owl3math Před 7 dny

      Hey Clifford. Thanks! appreciate it :) 🤩😍

  • @damyankorena
    @damyankorena Před 7 dny

    I've been working on an integral similar to this one but in the sum reverse the order of the terms and substitute a natural number k instead of 3. So far it doesn't seem to have a nice solution but I'll still try to genralise because I have nothing else to do with my life.

    • @user-yp2hg6hz8n
      @user-yp2hg6hz8n Před 7 dny

      It seems to be related to the Digamma function, so you might want to check that out.

  • @LouisLeCrack
    @LouisLeCrack Před 8 dny

    This is easy af bro

  • @djridoo
    @djridoo Před 9 dny

    It's a great video ! The only thing I would like to see more is (even if it is simple and short) an explanation of why we can switch the sum and integral. It makes the video more satisfying for me, It kid of "legitimates" the result. thank you :)

    • @owl3math
      @owl3math Před 9 dny

      Thanks DJ! And it’s a good point too 👍

    • @LouisLeCrack
      @LouisLeCrack Před 8 dny

      That’s the hardest part, the rest is easy af

    • @LouisLeCrack
      @LouisLeCrack Před 8 dny

      ⁠@@owl3mathdo real maths bro, please man. It pains me to see someone that isn’t rigorous

  • @BikeArea
    @BikeArea Před 9 dny

    Well done! 👌 (Maybe you would like to work a bit on your intonation as it sounds a little bit monotonous. But that may be just an interpretation by my own ears. ✌️)

    • @owl3math
      @owl3math Před 9 dny

      Thanks. And I think you’re right. I could use a better tone but it’s not my tendency

  • @ADDiOUMAARIR
    @ADDiOUMAARIR Před 9 dny

    That's fascinating ❤❤❤

  • @waarschijn
    @waarschijn Před 9 dny

    Nice solution. I would do the following: Define three series, A,B,C defined as the sums of respectively 1/(3n-1), 1/(3n), 1/(3n+1), each from n=1 to n=N. Then A+B+C=H_(3N)-1 and B=H_N/3 where H denotes the harmonic numbers. Now the series A-C is nice and can be easily computed to be 1-π/(3√3) using the cotangent residues trick from complex analysis. Then we can find the series we want, C-B, as ((A+B+C)-3B-(A-C))/2. From the approximation H_N≈ln N+γ we find lim H_(3N)-H_N=ln 3. So in total we get (ln 3-1-(1-π/(3√3)))/2 which agrees with your answer.

  • @MikeT10101
    @MikeT10101 Před 9 dny

    Nice job!

  • @dkravitz78
    @dkravitz78 Před 11 dny

    Technically you should have left the -n at the last step instead of putting in -Infinity, then gotten to e^0+e^(-n), and then take the limit to get e^0=1. Convergence on limits if you take it sooner has very stingy rules, and I'm sure they don't apply automatically to bounds of integration

    • @owl3math
      @owl3math Před 11 dny

      Makes sense. I glossed over it

    • @Bola382
      @Bola382 Před 10 dny

      was about to comment this but i think it's ok since we have continuous functions of n in the end

  • @adandap
    @adandap Před 11 dny

    Ugh. I didnt care for that - and i can vouch that having arctan in the floor function makes it impossible! (The thumbnail is kinda hard to read so I started with your first handwritten version). One other comment is that ln(1/u) = - ln(u) so you didnt really need the y sub.

    • @owl3math
      @owl3math Před 11 dny

      Yep thumbnail is a mess!!! But don’t you still need the substitution to clean up the u^2 in the denominator?

    • @adandap
      @adandap Před 11 dny

      @@owl3math No, just use parts. Differentiate ln(u) and integrate 1/u^2

    • @owl3math
      @owl3math Před 11 dny

      @@adandap oh yeah. That works :)

  • @erezsolomon3838
    @erezsolomon3838 Před 11 dny

    I gave this problem to my 10 year old cousin and he got it right. "1?!" Bro's gonna win the bee this year frfr

    • @owl3math
      @owl3math Před 11 dny

      Are you serious????

    • @erezsolomon3838
      @erezsolomon3838 Před 11 dny

      @@owl3math he really did guess it right. It seems to me that sometimes the best course of action is to just guess the answer haha

    • @owl3math
      @owl3math Před 11 dny

      Ha! Good point!

    • @cyriacus73
      @cyriacus73 Před 10 dny

      @@owl3math bro I was baffled too 😅😅

  • @xinhaiii1911
    @xinhaiii1911 Před 12 dny

    Imagine being a calc 1 student who just got into trig integrals and on the exam next day, there's a question that needs the long method to prove why the integral of 1/(x^2+1) is arctan(x) 💀

    • @owl3math
      @owl3math Před 12 dny

      that student would be very very lucky and well prepared :)

  • @user-kp2rd5qv8g
    @user-kp2rd5qv8g Před 12 dny

    One could write the integral as I = 4 \int^(2pi)_(0) dx 1/[3 + cos 4x ]. Defining 4x=t, I = \int^(8pi )_(0) dt 1/(3 + cos t) = 4 \int^(2pi)_(0) dt 1/(3+cos t). If z=e^it, This can be converted to a contour integral over the unit circle C. I = 8/i \int_{C} dz/(z^2+6z+1). Using the residue theorem, I = 8/i (2 pi i) 1/(2√8) = 2 √2 pi.

  • @user-kp2rd5qv8g
    @user-kp2rd5qv8g Před 13 dny

    The given integral, I = (d/dt)^n|t=a-1 [ \int^1_0 dx x^t], as d/dt x^t = x^t ln x. Now \int^1_0 dx x^t = 1/(t+1). So, I = [n! (-1)^n]/a^(n+1).

  • @peterm8808
    @peterm8808 Před 14 dny

    The constant value with ln(-1) is not completly trivial in the sense you are working with the complex logarithm and to make it properly defined you have to remove a half line from the domain, usually from 0 to minus infinity, so its not completly obvious (still its constant I know, but it should be mentioned that it is not completely trivial)

    • @owl3math
      @owl3math Před 14 dny

      Right. Its more involved if we need to get a value for that part 👍

  • @jerryanderson6217
    @jerryanderson6217 Před 14 dny

    POV: Me trying to solve the 2 mark question in my exam

  • @philip7833
    @philip7833 Před 14 dny

    It’s easier to understand things intuitively if you know the underlying logic

  • @koennako2195
    @koennako2195 Před 14 dny

    you could also do complex factoring (1+i)(1-i) and do partial fractions. BPRP did it this way for fun. It's also a cool way of doing it!

    • @owl3math
      @owl3math Před 14 dny

      Nice! Yes, I'm familiar with that way and I think it's a good way to get that "complex" definition for arctan I show in the video. Thanks :)

  • @holyshit922
    @holyshit922 Před 14 dny

    Can we get Gamma function ?

    • @owl3math
      @owl3math Před 14 dny

      Hey Jacek. What do you mean? Thats how i did it right?

    • @holyshit922
      @holyshit922 Před 12 dny

      @@owl3math This integral remids me Gamma function after substitution but Gamma functon can be avoided assuming that n is positive integer

    • @owl3math
      @owl3math Před 12 dny

      @@holyshit922 yep good point! Thats funny because I was just working on basically that exact thing. I think that's an upcoming video :)

  • @boringextrovert6719
    @boringextrovert6719 Před 14 dny

    Love it

  • @MikeT10101
    @MikeT10101 Před 14 dny

    I usually prefer the longer methods, and trying diffetent techniques, etc. It can be a great learning experience.

    • @owl3math
      @owl3math Před 14 dny

      Totally feel the same way. And sometimes trying some long methods on easy problems makes it easier to use later when you really need it. 👍

  • @the_motiED
    @the_motiED Před 15 dny

    Hello how can I contact with you because I have some questions about learn mathematics

    • @owl3math
      @owl3math Před 15 dny

      Sure. You can use my email address if you have some questions: owlsmathcontact@gmail.com

    • @the_motiED
      @the_motiED Před 15 dny

      @@owl3math I sent you the message to your email. I hope you can help me.

    • @the_motiED
      @the_motiED Před 15 dny

      I sent you a message hoping you can help me ​@@owl3math

  • @adandap
    @adandap Před 16 dny

    Nice approach.

    • @owl3math
      @owl3math Před 16 dny

      Thanks but What!?!? No alternative methods?

  • @felipefred1279
    @felipefred1279 Před 16 dny

    getting used to the amount of variables

    • @owl3math
      @owl3math Před 16 dny

      Hey Felipe. Good point. It does make things confusing on this one!

  • @boringextrovert6719
    @boringextrovert6719 Před 17 dny

    It is important to state that this is an improper integral at 0

    • @owl3math
      @owl3math Před 17 dny

      Yep good point. True 👍

  • @holyshit922
    @holyshit922 Před 17 dny

    1 integration by parts with du = 1/xdx , v = ln(1-x) or substitution u=1-x 2. Geometric series expansion 3. Change order of summation and integration 4. Integration by parts once again

  • @koennako2195
    @koennako2195 Před 18 dny

    Another integral from -a to a of even(x)/(1+b^odd(x)). very common

    • @owl3math
      @owl3math Před 18 dny

      Right. Pretty easy to spot. I think I need to do this less often. 🤣