Escape Velocity I पलायन वेग I

Sdílet
Vložit
  • čas přidán 9. 09. 2024
  • Escape Velocity I पलायन वेग I #1stgrade By Dr. S.K. Mehta Sir
    *Escape Velocity (पलायन वेग)* is the minimum speed an object must reach to break free from the gravitational pull of a celestial body, such as a planet or moon, without further propulsion.
    Derivation of Escape Velocity
    To derive the escape velocity, we start with the concept of gravitational potential energy and kinetic energy.
    1. *Gravitational Potential Energy (U):*
    The gravitational potential energy of an object of mass \( m \) at a distance \( r \) from the center of a celestial body with mass \( M \) is given by:
    \[
    U = -\frac{GMm}{r}
    \]
    where \( G \) is the gravitational constant.
    2. *Kinetic Energy (K):*
    The kinetic energy of an object with mass \( m \) moving with velocity \( v \) is:
    \[
    K = \frac{1}{2} mv^2
    \]
    3. *Total Energy (E):*
    To escape the gravitational field, the total energy of the object must be zero or positive. The total energy \( E \) is the sum of the kinetic and potential energies:
    \[
    E = K + U = \frac{1}{2} mv^2 - \frac{GMm}{r}
    \]
    4. *Condition for Escape:*
    For the object to just escape, the total energy \( E \) must be zero. Therefore:
    \[
    \frac{1}{2} mv^2 - \frac{GMm}{r} = 0
    \]
    5. *Solve for Escape Velocity (v):*
    Rearranging the equation to solve for \( v \), we get:
    \[
    \frac{1}{2} mv^2 = \frac{GMm}{r}
    \]
    \[
    v^2 = \frac{2GM}{r}
    \]
    \[
    v = \sqrt{\frac{2GM}{r}}
    \]
    Final Formula
    So, the escape velocity \( v \) from the surface of a celestial body is:
    \[
    v = \sqrt{\frac{2GM}{r}}
    \]
    where:
    - \( G \) is the gravitational constant \((6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2})\),
    - \( M \) is the mass of the celestial body,
    - \( r \) is the radius of the celestial body from which the object is escaping.
    Example Calculation
    For Earth:
    - Mass \( M \approx 5.972 \times 10^{24} \) kg,
    - Radius \( r \approx 6.371 \times 10^6 \) m,
    The escape velocity can be calculated as:
    \[
    v = \sqrt{\frac{2 \times 6.67430 \times 10^{-11} \times 5.972 \times 10^{24}}{6.371 \times 10^6}}
    \]
    \[
    v \approx 11.2 \text{ km/s}
    \]
    This is approximately the velocity required for a rocket to escape Earth’s gravitational pull without any further propulsion.
    #EscapeVelocity
    #PalaayanVeg
    #SpaceScience
    #Physics
    #GravitationalPhysics
    #Astrophysics
    #RocketScience
    #CelestialMechanics
    #SpaceExploration
    #ScientificKnowledge
    #Astronomy
    #PhysicsEquations
    #SpaceTravel
    #PhysicsConcepts
    #Gravity

Komentáře •