An Amazing Floor & Square Root Identity

Sdílet
Vložit
  • čas přidán 7. 09. 2024

Komentáře • 25

  • @alipourzand6499
    @alipourzand6499 Před měsícem +7

    I used desmos to graph the three functions anx actually the equation holds for x>=0.6782 whitch is the lower bound value that has been found. Great video as always.

  • @eliasmai6170
    @eliasmai6170 Před měsícem +9

    always love seeing your video, especially ones about floor function.

  • @graf_paper
    @graf_paper Před měsícem +8

    I know that this isn't totally relevant because we are accepting all positive real values for n, but I thought it was interesting to note that 9n+8 can never be a aquare number for any integer valuenof n.
    0,1,4,7 are the only square numbers mod 9

    • @iMíccoli
      @iMíccoli Před měsícem

      I remember seeing this problem in a floor function list but n was a natural number so that observation is actually crucial in the proof.

    • @TheArtOfBeingANerd
      @TheArtOfBeingANerd Před měsícem

      How do you show this result?

    • @iMíccoli
      @iMíccoli Před měsícem

      ​@@TheArtOfBeingANerdLet 9n+8=s² for some natural number s.
      Now look at the equation modulo 3:
      0+2=s² so s²=2 (mod 3) which is not true because all perfect squares are 1 modulo 3.

    • @iMíccoli
      @iMíccoli Před měsícem

      ​​​​@@TheArtOfBeingANerdAnother way to prove is to use @graf_paper method.
      Look at all the possible remainders of s² when divided by 9 and you'll notice that 8 is not in that list.
      s can leave a remainder of (0,1,2...8) when divided by 9 so just use modular arithmetic to find the remainders of s², here are some examples:
      If s=7 (mod 9) then s²=49=4(mod 9)
      If s=8 (mod 9) then s²=64=1(mod 9)

  • @antosandras
    @antosandras Před měsícem +2

    Using the well-known inequalities between geometric, arithmetic and squared means for not equal a, b, c: cbrt(abc) < (a+b+c)/3 < sqrt((a^2+b^2+c^2)/3)
    /cbrt stands for cube root/ for sqrt(n-1), sqrt(n), sqrt(n+1), we get
    3*(cbrt(sqrt((n^3-n)) < sqrt(n-1)+sqrt(n)+sqrt(n+1) < 3*sqrt((n-1+n+n+1)/3) = sqrt(9n).
    For n>=4, it's easy to see that sqrt(9n-1) < 3*(cbrt(sqrt((n^3-n)), or equivalently (9n-1)^3 < 3^6(n^3-n):
    it leads to the quadratic 0 < (9n)^2 - 28*9n + 1/3 = (9n-14)^2 - 14^2 + 1/3, clearly true for n>=4.
    So for n>=4, sqrt(9n-1) < sqrt(n-1)+sqrt(n)+sqrt(n+1), and the same is easy to check "manually" for n=2, 3.
    Replacing n by n+1, we get the two desired inequalities: sqrt(9n+8) < sqrt(n)+sqrt(n+1)+sqrt(n+2) < sqrt(9n+9)
    implying the identity in question. Q.E.D.

  • @gtjacobs
    @gtjacobs Před 29 dny

    You're a very good presenter; I'm enjoying your channel. Thank you for sharing your talents.

  • @jellybabiesarecool4657
    @jellybabiesarecool4657 Před měsícem

    Your number theory videos are my favourites! Cool techniques used here!

  • @Utesfan100
    @Utesfan100 Před měsícem

    Using the techniques used to bound a, and c

  • @magicmeatball4013
    @magicmeatball4013 Před měsícem +1

    Beautiful solution, I always love inequality work.

  • @pseudo-ku
    @pseudo-ku Před měsícem +2

    Your videos are wonderful

  • @wqltr1822
    @wqltr1822 Před měsícem +4

    How was this problem come up with? The '9' coefficient makes since (1+1+1)^2 = 9, but the constant at the end seems tricky to pinpoint, and I assume there are other non-integer constants which still satisfy the inequality. Is it posssible to generalise?

    • @DrBarker
      @DrBarker  Před měsícem +6

      I found this posed as a problem to solve - there's a link in the description. Not sure how it was discovered though. It should be possible to generalise to include more terms. For example, some trial and error with replacing the "+8" term leads to sqrt{16n + 23} < sqrt{n} + sqrt{n+1} + sqrt{n+2} + sqrt{n+3} < sqrt{16n + 24}, so a similar result holds for floor{sqrt{16n + 23}}.

    • @bubbotube
      @bubbotube Před měsícem

      @@DrBarker Problem E3010 appeared on Vol. 93, issue No. 7, page 483. It's been published in 1983. Still loved your solution, though.

  • @MichaelRothwell1
    @MichaelRothwell1 Před měsícem

    Beautiful problem and solution!

  • @ronbannon
    @ronbannon Před měsícem +2

    Great problem! Heer's a question:
    3 sqrt(n) < sqrt(n) + sqrt(n+1) + sqrt(n+2) is true for all natural numbers; and sqrt(9n+8) < 3 sqrt(n+1) for all natural numbers. So why can't you just compare floor(3 sqrt(n)) < = floor(3 sqrt(n+1)), which is true for all natural numbers; hence, the stated problem is true for all natural numbers.

    • @antosandras
      @antosandras Před měsícem

      You would need floor(3 sqrt(n+1)) < = floor(3 sqrt(n)) that is not true.

    • @yuichiro12
      @yuichiro12 Před měsícem +1

      You can't conclude that sqrt(9n+8)

  • @wesleysuen4140
    @wesleysuen4140 Před měsícem

    Is this similar to Part (3) of Problem 723 of Ramanujan’s 3rd notebook:
    floor(sqrt(n)+sqrt(n+1))=floor(sqrt(4n+2))?

  • @mil9102
    @mil9102 Před měsícem

    It’s Friday already ???