TSP

Sdílet
Vložit
  • čas přidán 27. 06. 2024
  • In this episode Shahriar takes a detailed look at the Starlink Satellite Dish. The dish was kindly sent by Ken who has done his own initial teardown here:
    • Starlink Teardown: DIS...
    The dish is analyzed layer by layer from the radome down to individual integrated circuits. The RF design, system architecture and many aspects of the overall product are described in details. An X-Ray of the RF stack is also shown which further explores the design of the array.
    www.TheSignalPath.com
    / thesignalpath​
    www.Patreon.com/TheSignalPath
  • Věda a technologie

Komentáře • 446

  • @PixelSchnitzel
    @PixelSchnitzel Před 3 lety +632

    Full IC analysis -- YES PLEASE!!! :-) I'm soaking this up. It's still black magic, but at least it's understandable at a high level, thanks to your explanation.

    • @AndrewZonenberg
      @AndrewZonenberg Před 3 lety +25

      Yeah I'd love to see it too. I'm quite familiar with digital CMOS reverse engineering but RFIC layout is black magic to me.

    • @PeterHuson
      @PeterHuson Před 3 lety +10

      Yes!

    • @jordantekelenburg
      @jordantekelenburg Před 3 lety +7

      Yes

    • @RogerDiotte
      @RogerDiotte Před 3 lety +3

      LOL Black Magic...Laying out the paper towels around my chair to expunge all the drool and drips in the exciting episode also!

    • @awesamhead
      @awesamhead Před 3 lety +3

      Yesssss please..

  • @MegaKFO
    @MegaKFO Před 3 lety +348

    I would like to see the IC analysis.

  • @PedroDaGr8
    @PedroDaGr8 Před 3 lety +96

    I can't think of anyone more qualified to do this analysis!

    • @Ozzy3333333
      @Ozzy3333333 Před 3 lety +1

      I can, engineers from my work, we are currently working on 106gbps pam4 with a single lane (diff pair), and 8 in parallel for 800gbps bandwidth.

    • @Thefreakyfreek
      @Thefreakyfreek Před 2 lety

      I cant tink of anyone more unqualified than me I just got my rtl sdr and I'm in to bipolar antennas and just learned that bigger does not mean better in antena

    • @cvspvr
      @cvspvr Před rokem +1

      @@Ozzy3333333 how much 8k vr porn could you stream with 106gbps?

  • @richardj163
    @richardj163 Před 3 lety +31

    The knowledge of RF here is next level!

    • @navadeep.ganesh
      @navadeep.ganesh Před 3 lety +8

      Saw this video twice, thrice and I still hear new words!

    • @RiyadhElalami
      @RiyadhElalami Před 3 lety +2

      @@navadeep.ganesh hahaha, it is totally a different world. I understood almost nothing.

  • @nop8051
    @nop8051 Před 3 lety +19

    Thank you for your insight. I'm now even more impressed that they can justify 500$ price tag.
    I can only bashfully ask for more zoomed in view when explaining minute details of such large board.

  • @sh33pd0g
    @sh33pd0g Před 3 lety +45

    Love your channel! I have no background in RF and work in a completely different field but your teaching style is wonderful and I watch every video you make. Thank you for what you do.

    • @campbellmorrison8540
      @campbellmorrison8540 Před rokem

      Me neither and have learnt heaps from these videos. I found this which helped me immensely to understand these structures in a little more detail. Incredible really. czcams.com/video/qs2QcycggWU/video.html

  • @quieroverduras
    @quieroverduras Před 3 lety +40

    I would like to see a full IC analysis. Thanks for the video, Shahriar.

  • @proudsnowtiger
    @proudsnowtiger Před 3 lety +85

    Loved that little 100 GHz phased array you popped out half way through. Any chance of more on the design process for that?

  • @brentnorrod300
    @brentnorrod300 Před 3 lety +6

    Nice breakdown. This is a well engineered antenna system. I've been in RF/Microwave design for 42 years. I started with mechanically steered RADAR using a single Transmit amplifier into the manifold. Now we're doing Q-band phase arrays. The big BGA in the middle is most likely a SiGe PHP process RFIC. This allows the Digital control core and RF to be grown on the same IC. The RFIC looks to be an 8-channel T/R with each channel having individual Phase and Gain control. The smaller 8 chips are probably the Final Tx amp, and Rx-LNA that feeds the larger chip in the middle of the group. The RFFE-CLK & DATA are the digital control links to the SIGe. My current specialty is the beam steering SiGe control aspects for similar setups with Design verification testing.
    Working in the Defense/Aerospace/Space sectors, I am absolutely blown away by the quality of this consumer product. And I agree, H/V polarization for full duplex.

    • @pizzablender
      @pizzablender Před 3 lety +1

      I don't think it is a consumer product. It is a mass-produced prototype, spending investors' money to create a market.
      Trying to make it cheap will come later.

  • @hpux735
    @hpux735 Před 3 lety +55

    As always more is better!! An IC analysis would, of course, be appreciated!

  • @connecticutaggie
    @connecticutaggie Před 3 lety +12

    Yes, I would love to see a full IC analysis. I am going to be teaching a RF Communications Course at a local University and I would like to (eventually) add a lesson on and intro to phased arrays and beam forming as it is becoming more common in products.

  • @_hammyhamster_
    @_hammyhamster_ Před 2 měsíci

    The best block diagram description of a circuit I have ever heard. Thank You.

  • @Mr_i_o
    @Mr_i_o Před 3 lety +3

    I work with antennas and radio systems myself, and I gotta say I really appreciate your breakdown and commentary. Concise and thorough.

    • @rvarnum
      @rvarnum Před 3 lety +2

      Adjusting CB radio antennas with an allen wrench and a Radio Shack SWR meter hardly makes you an expert.
      LOL, just kidding.

  • @noipv4
    @noipv4 Před 2 lety +2

    I watched the entire video on a Starlink connection 📡Thanks a lot for the details, especially the X-ray image analysis.

  • @stevenkenney9473
    @stevenkenney9473 Před měsícem +1

    Such a great analysis. Thank you!

  • @Ricard2k
    @Ricard2k Před 3 lety +6

    I was waiting for this analysis since I saw Ken´s video. Thanks, Shahriar!
    I loved the "good as new"!

  • @thpths14
    @thpths14 Před 3 lety +1

    This is my new all time favorite video. Thank you for taking the time to do this!

  • @Chris_Grossman
    @Chris_Grossman Před 3 lety +25

    There are many man-years of engineering time in this system. The relatively simple construction is impressive. More detail of both the ICs and context of it's place in the system would be interesting.

  • @hedleyfurio
    @hedleyfurio Před 2 lety +2

    Competent engineer with time and access to unlimited high end equipment and tools results in very informative videos - thanks for making time to share the knowledge 👍

  • @paulround8501
    @paulround8501 Před 3 lety +1

    The number of Starlink dish disassembles I have seen and thought, Signal Path needs to do one of these, and here it is, I am not disappointed at all. Oh and yes, full IC analysis is absolutely required for this.

  • @NomenNescio99
    @NomenNescio99 Před 3 lety +12

    Awesome I've been waiting for this!

  • @Fake0Name
    @Fake0Name Před 3 lety +43

    The radome and floating elements look like they're probably made using a PCB lamination process. Fancier board houses can laminate all sorts of interesting things into a PCB stackup, including things like that honeycomb.
    Really, a bunch of components of the antenna look like they're clever uses of existing PCB manufacturing processes.

    • @namibjDerEchte
      @namibjDerEchte Před 3 lety +1

      At what kinds of MOQs do these board houses start talking, and how does one find one that starts at a fairly low MOQ (in the monetary sense)?
      I'm involved in a 5.8 GHz relay "plane" design, and using the (currently planned as such) electronically steered phased array antenna FR4 as a structural element (basically one side of a sandwich plate, with honeycomb or foam as the core) would be quite useful from a weight perspective.

  • @vanniealdamar9386
    @vanniealdamar9386 Před rokem

    I'm stay tunned hopping for starlink v2 dish teardown and analysis

  • @MrJef06
    @MrJef06 Před 3 lety +60

    Shariar: 10-14 GHz is still fairly low frequency...
    Me: yeah yeah...
    Shariar (2 minutes later): here is a 100 GHz phased array...
    Me: !!!

    • @ssupernovae
      @ssupernovae Před 3 lety +5

      I mean, there are optical phased arrays that are much, much smaller. I'd love to see an analysis of a steerable laser array.
      And thankfully it's only 10-14 GHz since 100 GHz is heavily attenuated by the atmosphere.

    • @heron5045
      @heron5045 Před 3 lety

      @@ssupernovae Man, watching the vid and reading the comments really makes me wana read into rf magic, it sounds just like my kind of rabit hole.

    • @RayDrouillard
      @RayDrouillard Před 2 lety +1

      Ummm, yeah. The technology is a bit different from my old 1.8-2.0 MHz transmitter.

  • @Dicertification
    @Dicertification Před 3 lety

    A perfect watch with a morning coffee. Thanks for the video. Extremely insightful.

  • @veggieman95
    @veggieman95 Před 3 lety +8

    been waiting for this video from you for a while

  • @BrandonPoulton
    @BrandonPoulton Před 3 lety

    Please to a chip breakdown! This was great!!! Nowhere else could I learn this much so quick.

  • @dexsilicium
    @dexsilicium Před 3 lety +19

    Great analysis, thanks a lot ! I was wondering what kind of X-ray machine do you use ? Could you be more specific ?

  • @ianjuby
    @ianjuby Před 2 lety

    Dude - that was fascinating and beyond excellent. I get my starlink this week hopefully, so I'm super stoked.

  • @CarlosAcosta-fx2eg
    @CarlosAcosta-fx2eg Před 3 lety +42

    Guessing Shahriar probably designed this whole system in his free time and is under strict restrictions not to tell us. :-)

  • @TNTsundar
    @TNTsundar Před rokem +2

    Love your channel. Keep these kind of videos coming. Thanks.

  • @graybeardmicrowave3074
    @graybeardmicrowave3074 Před 3 lety +13

    Great video!
    They may be getting the circular polarization from the notches on the suspended patch element; not just to electrical lengthen it. Though it does look too symmetrical. On rectangular patches you can generate LHCP or RHCP by trimming two corners (relative to the single feed point) to generate a quadrature resonance along the orthogonal edges. Though the polarization isolation and BW is poor compared to a true quadrature feed.
    On the feed board, it looks like every other column has a single slot with a large chip, and the orthogonal slots with a smaller chip.
    Maybe TX with linear polarization on the bottom patch, and RX with simultaneous LHCP and RHCP on the top patch, with dual LNA and quadrature splitter. That gives them the massive downlink bandwidth.
    What’s the element pitch? Looks much too tight for X-band, so maybe TX and RX elements interdispursed.
    All just a guess on my part, but fascinating array.

  • @rowanjones3476
    @rowanjones3476 Před 3 lety +1

    I’d been hoping this antenna would find it’s way to your bench since the first video. Thanks for offering your insight - fascinating as always. And yes, I’d love to see a deeper analysis of the RFIC.

  • @jeanie52
    @jeanie52 Před 3 lety +5

    I love the break down. When Ken did his tear down I looked at some of the close ups and
    then when he said the chips were from ST that tells me that they are cmos or bi-cmos. The power supplies and there voltages seem to say as much. I would think the chips communicat with a form of I2C/JTAG. I would have to look at connections. I have been an RF engineer most of my life. Started with Ham radio in my teens. Microwave in my twenties and Satcom from there. These patches could be H/V from there makeup. With phasing they could be circular. With the PLL in the middle of the board timing is of great concern. To make this work as a circular/steerable array is critical.

  • @john-r-edge
    @john-r-edge Před 2 lety +1

    The presenter achieves an amazing result - fascinating despite being technically way over my head.

  • @jbrown468
    @jbrown468 Před 3 lety +1

    "...Two roads diverged in a circuit, and He-
    He explained the one less traveled by,
    And that has made all the difference."
    AMAZING CONTENT!

  • @GregUzelac
    @GregUzelac Před 3 lety

    Wow!!! One of the most interesting tear downs EVAH!!

  • @UNSCPILOT
    @UNSCPILOT Před 3 lety +5

    The fact that these receivers only cost 500$ with this level of engineering is seriously impressive, especially for a first generation of the Starlink system, I look forward to the later iterations

    • @Thesignalpath
      @Thesignalpath  Před 3 lety +6

      It is being sold for less than 1/5th of its cost.

  • @riesmoos
    @riesmoos Před 3 lety

    Awesome video, really nice to have a closer look into one of these new lightning arrestors.

  • @MarkFunderburk
    @MarkFunderburk Před 3 lety +6

    I've been waiting for this one.

  • @TheHuesSciTech
    @TheHuesSciTech Před 3 lety +75

    11:01 I think what you mean to say is... hexagons are the bestagons?

  • @hecker..8903
    @hecker..8903 Před 2 lety

    YES for for full IC analysis! and YES for this type of mailbag stuff analysis..! An excellent video! Thanks!

  • @hillseg
    @hillseg Před 3 lety +1

    Thank you! Very interesting topic, please do more!

  • @milolouis
    @milolouis Před 3 lety

    Yesssss!!!! Noone could do a better CZcams analysis than Mr Path.

  • @Nik930714
    @Nik930714 Před 3 lety +1

    When i watched the original video from Ken, my first tough was that he should send it to you. I'm really glad that this he did. I've not watched your video yet, but i'm sure its going to be interesting.

  • @gregorymccoy6797
    @gregorymccoy6797 Před 3 lety

    I will be digesting this for some time. A lot more information than I was expecting.

  • @tedvanmatje
    @tedvanmatje Před 3 lety +2

    There you go again, Shahriar....luring us AF guys to the RF dark side :)
    Great posting....thanks man!

  • @idooggoodi
    @idooggoodi Před 3 lety +7

    Please do more mail bag tear downs in future. This was quite interesting.

  • @godfreypoon5148
    @godfreypoon5148 Před 3 lety +1

    1:21 Top left - finally we see how Shahriar can be so smart!
    I need to get one of those!

  • @kingraine1
    @kingraine1 Před 3 lety

    This is amazing, Dr Shahryar

  • @jeffstull2534
    @jeffstull2534 Před 3 lety +1

    I know zilch about any of this mumbojumbo but was still mesmerized and watched it. Thanks for the next video on this technology.

  • @mc_cpu
    @mc_cpu Před 3 lety

    Came from the recent eevblog video. How have I missed this channel? Better late than never!

  • @lucasng3330
    @lucasng3330 Před 3 lety

    i can repeatedly listen to this video without getting bored and learn new knowledge!. Please do full analysis, Sir! Best Wish.

  • @boshacka
    @boshacka Před 3 lety +10

    Dude you should do a lot of videos on this thing! Besides the IC stuff, I would love to see some more on depth analysis the phase array, maybe you could even replicate it in a 3d array sim and demonstrate the focusing, multi beam, sidelobes, cool stuff! And I honestly think this could get a ton of views, gotta milk that spacex hype

  • @Allen.Morrison
    @Allen.Morrison Před rokem

    Excellent analysis and explainations. Really enjoyed getting to see how StarLink implemented their phased arrays and how to think through their possible design decisions. My two favorite parts were the antenna D.O.F. analysis, which gave me good ideas about how to design future antennas, and then the 100 GHz array, which I may even use as a comparision in my Master's defense.

  • @edonohue1
    @edonohue1 Před 2 lety

    Total interesting and fun. Thank you!! Be great to have you do a teardown of the new rectangular array and do a comparison!

  • @minibikemadman
    @minibikemadman Před 2 lety

    Man such a awesome video. I am a ham radio operator and love RF...its some crazy ish! I just received my starlink and it is so cool to know how it works.

  • @gymprofessor329
    @gymprofessor329 Před 3 lety

    I saw the original video and couldn't help but think you would do a fantastic reverse engineering of it. Saw this in my feed and was pumped!

  • @BradleyFarnsworth
    @BradleyFarnsworth Před 3 lety +1

    Nice analysis Shahriar! I appreciated to see the Tesseract cameo as well.

  • @mikeissweet
    @mikeissweet Před 3 lety

    Very fascinating piece of hardware!

  • @VJ-kc6qs
    @VJ-kc6qs Před 3 lety

    Please continue the brown bag analyses, and it would be excellent to see the IC analysis as well. You're an inspiring engineer Shahriar.

  • @wirtdonners4212
    @wirtdonners4212 Před 2 lety +1

    Amazing work! Thank you very much! Really good.

  • @Edward-tz7xz
    @Edward-tz7xz Před 2 lety

    Magnificent explanation. Thank you.

  • @johngord752
    @johngord752 Před 3 lety

    Very informative and surprisingly understandable.

  • @grahamjones5885
    @grahamjones5885 Před 3 lety

    Excellent analysis! Thanks.

  • @willernst8376
    @willernst8376 Před 3 lety +1

    This is great! You should make a radar. Not a complicated one, but I think that would be very interesting. Not to mention a good visual way of understanding the rf world. Keep up up the videos!

  • @movax20h
    @movax20h Před 3 lety +2

    More of this please. I was waiting for Starlink teardown and analysis for long time, and that is just scratching the surface. But good preliminary analysis.

  • @mikeselectricstuff
    @mikeselectricstuff Před 3 lety +100

    I wonder if it's an OSP finish rather than bare copper - bare copper would seem a bit risky for something like this.

    • @Thesignalpath
      @Thesignalpath  Před 3 lety +27

      Interesting. It has tarnished a lot...

    • @voltlog
      @voltlog Před 3 lety +12

      @@Thesignalpath I agree, OSP would preserve the copper with no discoloration but in this case it is clearly visible that the copper is unprotected.

    • @DOGMA1138
      @DOGMA1138 Před 3 lety +11

      Could've been OSPed during manufacturing, but OSP is well organic and really isn't durable, it protects the pads until the solder is applied it's not designed for long term protection it would degrade with time, as it's water based even the moisture in the air is enough to strip it over time, and I'm pretty sure the RF would get rid of what else is left.

    • @swright1967
      @swright1967 Před 3 lety +6

      It definitely looked like an OSP finish to me. I have seen & processed lots of them. The outer layer copper looked etched ( non glossy) and even though the board had obviously been handled & exposed to the environment, there was not a lot of oxidation. It could be as simple as a benzotriazole (BTA) finish, or possibly a thicker imidazole type ( trade name ENTEK) I don't know if the thicker imidazole coating change RF performance, as they may introduced dielectric variation. I think if the assembly is semi-hermetic, the thinner BTA coating would keep oxidation minimized for a few years.

    • @Zadster
      @Zadster Před 3 lety +4

      @@swright1967 Yes, it shouldn't be difficult to assemble at least part of the antenna in a nitrogen atmosphere. The design does look amenable to hermetic sealing.

  • @k7iq
    @k7iq Před 3 lety +1

    Great video ! It would be neat to have even a partial IC analysis. Could you please if you have a chance, take some more closeups of the IC side of the board ? Was wondering more about their construction of those areas too. Love this one !

  • @IanJohnstonblog
    @IanJohnstonblog Před 3 lety +1

    Please please please do a detailed IC analysis. This was so educational! Thank you!!

  • @RiyadhElalami
    @RiyadhElalami Před 3 lety +2

    Please, FULL IC ANALYSIS. That would be amazing.
    I love you Shahriar.

  • @soheilsalmanishabafrouz6493

    As always fantastic , I would love to see the IC analysis.

  • @phiber9
    @phiber9 Před 3 lety

    amazing analysis. thank you so much!

  • @supernumex
    @supernumex Před 3 lety

    awesome video! would be interesting to go into detail on some of the chips and have a quick look at the datasheets.

  • @AlfredoMazzinghi
    @AlfredoMazzinghi Před 3 lety

    Would love to see IC analysis as well! Great video, I don't know much about antenna design but was very very interesting!

  • @riteshjain4805
    @riteshjain4805 Před 3 lety +1

    Thank you very much for the video! This was a very interesting analysis on your part! Would love to see a detailed IC analysis if possible!

  • @Ahem2002
    @Ahem2002 Před 3 lety +1

    As a traditional VSAT person, this is a game changer for retail satellite internet.

  • @brainkod
    @brainkod Před 3 lety +32

    I wish I could get the contents of that eMMC flash IC and do "The Software Path" in parallel with the RF/hardware analysis ;)

    • @iamzid
      @iamzid Před 3 lety +3

      i saw a video where a guy soldered a connector onto one of these boards, he decoded the signal and got the software start up to display on his computer. it required a pass code to continue any further into it.

    • @Spacefish007
      @Spacefish007 Před 3 lety +10

      probably encrypted.. These newer chips have some hardware based encryption built in..
      They have a couple thousend efuses (one time settable bits) which you burn into a key + certificate during manufacturing of your product.
      Once the management processor or the main processor boots up, it start from an on-chip rom, which reads the encrypted first stage bootloader from NAND or QSPI flash into memory, afterwards it´s decrypted, it´s signature is checked an then then executed.. If any of this steps fail, the CPU goes into a failsafe mode..
      First stage bootloader will typically do the same (decryption + signature check) on the second stage bootloader (like uboot or something like that..)
      In most chips with FPGAs, the same is done for the FPGA image as well to protect IP.
      One way to dump at least the software image: attach an external FPGA to the RAM address / data lines (if ram is external) and try to find the decryption key, if online encryption is used for a block device for example.
      Even newer chips have memory encryption though (symetric "random" or fixed (efused) key is used to encrypt memory pages).. Furthermore this is complicated as you have to reverse engineer the memory interleaving and page assignments and so on..

    • @iamzid
      @iamzid Před 3 lety +4

      @@Spacefish007 maybe but it sounds like you haven't seen it. the first part of his video features this very same dish, then it cuts to him analyzing his own unruined dish. if you like this you'll like his. czcams.com/video/38_KTq8j0Nw/video.html

    • @Spacefish007
      @Spacefish007 Před 3 lety

      @@iamzid At least that looks promising, as if they left a serial console enbaled, they probably did not lock down the system that much..
      Dumping the eMMC chip from the broken dishy might be an option.

  • @afmedwards
    @afmedwards Před 3 lety

    Great video and description. I almost understood it :D

  • @jayzinho10
    @jayzinho10 Před 3 lety

    Sir Shahriar, you are PhD supervisor goals.🥺🤩

  • @Nick-jz3ic
    @Nick-jz3ic Před 3 lety

    Awesome video. Please go into more detail

  • @dvs6121
    @dvs6121 Před rokem

    33:09 "lemme just put this back here... there ya go... good as a new" 😆 🤣
    After 30 minutes of a highly technical teardown this was the perfect ending.

  • @rothn2
    @rothn2 Před 3 lety +1

    Yes, would love to see this x-rayed

  • @OpenBuilds
    @OpenBuilds Před 3 lety

    Wonderful analysis thank you

  • @avejst
    @avejst Před 3 lety

    Great video as always
    Thanks for sharing :-)

  • @saiskanda
    @saiskanda Před 3 lety

    Yes full IC analysis please!

  • @tabajaralabs
    @tabajaralabs Před 3 lety

    man, that video was GREAT!!!!! thanks a lot :)

  • @balrampillai5314
    @balrampillai5314 Před 3 lety +1

    Looking forward to an IC Analysis video!

  • @richardwatkins6725
    @richardwatkins6725 Před 3 lety

    beautiful design

  • @Darieee
    @Darieee Před 3 lety

    fantastic video .. some IC analysis would indeed be a super cool addition

  • @CraigBurden1
    @CraigBurden1 Před 3 lety

    Very very interesting, thank you for sharing your knowledge of the dark arts! I would have loved a closer view of the populated side of the board

  • @robertfenney
    @robertfenney Před 3 lety

    Totally awesome!

  • @moremartin320
    @moremartin320 Před 2 lety

    Thank you for sharing! You did a great job explaining about all the different chips and components on the board. Much appreciated! Now I don't have to open my dish. lol.

  • @sorooshrasty9438
    @sorooshrasty9438 Před 3 lety +5

    Dear Dr. Shahramian, it would be great if you do an IC analysis as well.

  • @kevy1yt
    @kevy1yt Před 3 lety +6

    I need some of that magic red fixing tape!

  • @ligius3
    @ligius3 Před 3 lety

    VERY interesting.
    May I suggest that you have segments where you study either the RF news or even rumors? For example, my knowledge has stopped at phased arrays, I thought they were some new tech, even though they have been extensively used in the military for probably 50 years or more. I have no idea what's new and what will come to the consumer market (in 10-20 years), much less what's not publicly disclosed yet.
    I believe you might be the best suited person for this and many viewers will enjoy. Even something "trivial" such as studying what new RF chips are coming on the market.

  • @nlbutts1
    @nlbutts1 Před 3 lety

    Wonderful description. Thank you. I always learn something from your videos. Any chance you could create a rough drawing of the architecture?

  • @DannyBokma
    @DannyBokma Před 3 lety +9

    I must be dreaming, this is too cool! And available for regular consumers for 500$.

  • @gglovato
    @gglovato Před 3 lety +3

    I'd like to see an "RF mailbag" where you dissect interesting RF stuff sent to you

  • @alexscarbro796
    @alexscarbro796 Před 3 lety +2

    One issue with a gold finish is the required interim layer of nickel which is quite lossy as you go up in frequency (with increasingly shallow skin depth), so for physically long structures (such a broadband delay lines), may sometimes be unfinished and rely on an environmental seal elsewhere, as you suggest.