Amazing Effect When You Put a Whirlpool in a Vacuum Chamber

Sdílet
Vložit
  • čas přidán 17. 11. 2018
  • Checkout Brilliant here: brilliant.org/theactionlab/
    Get your Action Lab Box Now! www.theactionlab.com/
    In this video we test what happens to a whirlpool when you put it in a vacuum chamber. I show you how a whirlpool forms and then I test if this would still work in a vacuum chamber the results are very interesting!
    Follow me on Twitter: / theactionlabman
    Facebook: / theactionlabrat
    DISCLAIMER: If you use the information from this video for your own projects then you assume complete responsibility for the results.
    My Other Channel:
    / @actionlabshorts
    For more awesome videos checkout:
    Amazing experiment actually makes black fire
    • Amazing Experiment Act...
    Crushing My Own Hand In a Hydraulic Press-Crazy Experiment on My Brain
    • What Happens if You Pu...
    What Does a 4D Ball Look Like in Real Life? Amazing Experiment Shows Spherical Version of Tesseract
    • What Does a 4D Ball Lo...
    How I Made an Ant Think It Was Dead-The Zombie Ant Experiment
    • How I Made an Ant Thin...
    What Happens if You Open a Vacuum Chamber Under Water? And Do Vacuums Float?
    • What Happens if You Op...
    Can Light be Black? Mind-Blowing Dark Light Experiments!
    • Can Light be Black? Mi...
    Mirror-Polished Japanese Foil Ball Challenge Crushed in a Hydraulic Press-What's Inside?
    • Mirror-Polished Japane...
    Mixing the World's Blackest Paint With the World's Brightest Paint (Black 2.0 vs LIT)
    • Mixing the World's Bla...
    Is it Possible to Unboil an Egg? The Amazing Uncooking Experiment!
    • Is it Possible to Unbo...
    What if You Try To Lift a Negative Mass? Mind-Blowing Physical Impossibility!
    • What if You Try To Lif...
    What Does a Giant Monster Neodymium Magnet do to a Mouse?
    • What Does a Giant Mons...
    The Worlds Blackest Black vs The Worlds Brightest Flashlight (32,000 lumen)-Which Will Win?
    • The Worlds Blackest Bl...
    How Much Weight Can a Fly Actually Lift? Experiment-I Lassoed a Fly!
    • How Much Weight Can a ...
  • Zábava

Komentáře • 1,6K

  • @TheActionLab
    @TheActionLab  Před 5 lety +479

    As some have pointed out there is definitely more going on here than just air pressure. In fact you cannot talk about any fluid flow with only talking about pressure. You have to always talk about fluid velocity and pressure together. We do know there is the centrifugal effect of water being thrown out the sides and also down the middle. But the reason there is ever any flow at all is due to pressure differences. The ball is being dragged down by the water but it is also moving fast and so the atmosphere pushes it down as well. There is also rarified air and eater vapor that forms under the ball pushing it up (maybe). This is definitely a phenomenon that I have never seen before in any literature so if anyone has any resources are open to hear more about this.

    • @Anankin12
      @Anankin12 Před 5 lety +11

      But isn't pressure in a fluid inversely proportional to its velocity? Shouldn't there be more pressure in the centre, where the fluid is at its slowest?
      A.k.a.: imho, the ball doesn't sink because there is less pressure in the centre rather than on the sides, although that could explain that anyway through a reduction in Archimede's force due to the lowered pressure

    • @Anankin12
      @Anankin12 Před 5 lety +22

      Also, I don't think atmospheric pressure has anything to do with it, because once it is underwater it can't affect it, but I haven't seen the full video yet. Might cancel the comment.
      Edit: I was wrong, atmospheric pressure plays a role, but I still don't think it works like you said. When it's completely sunk there is no way for the air to push it down, since it doesn't make any contact with it.

    • @yaminbilal5346
      @yaminbilal5346 Před 5 lety +22

      Also if there isn't a hole in the ball, is there air pressure in the ball that stays the same and could that potentially lead to it rising as well?

    • @MisterTrayser
      @MisterTrayser Před 5 lety +3

      @@Anankin12 have you learned physics? In what class are you?

    • @xtmedia
      @xtmedia Před 5 lety +14

      I thought the ball would go down for the same reason your helium balloon goes in front of the car when you drive. eg the water is heavier than the ball and will move toward the wall faster than the ball who get pushed center. With less force pushing the ball upward the ball sink. As for the ball going up I agree with other comments about water vapor since your other videos shows that water boils at that pressure. For the same centropic reason the vapor is also pushed toward the center under the ball.

  • @mikefochtman7164
    @mikefochtman7164 Před 4 lety +170

    The type of 'spinner' you used has a serious effect on this experiment. The agitator at the bottom, is in effect, a sort of centrifugal pump. Water is constantly being flung outward at the bottom, then forced up the walls of the container and flowing back in toward the center (all with considerable tangential flow as well). (this is why this type of 'mixer' is so often used, it circulates the fluid both tangentially around the container, but also radially outward, upward, and back down in the center)
    This downflow in the exact center, IMHO, is what drags the ball below the surface. After all, when the ball is completely submerged, the air isn't acting on the ball at all. As others have pointed out, as the water spins around it also has centrifugal forces acting on it, so the surface of the water is always perpendicular to the combined centrifugal/ gravitational forces acting on it.
    It would be very enlightening to use a different mechanism to 'spin' the water. For example, remove the agitator and spin the entire beaker. With all the water spinning at the same RPM, you would not set up the same internal flow pattern. The water at the bottom would not be 'pushed' outward to the walls of the beaker any more than any other water, so there should not be any 'vertical' circulation. Edit: Without this, I predict the water will form a parabola, but the ball will not be 'sucked/pushed' under the surface (much like you saw it under the high vacuum condition).

    • @col0342
      @col0342 Před 4 lety +10

      "spin the entire beaker... I predict the water will form a vortex in the middle" - it won't create a vortex funnel. It will form a concave parabolic surface. Like liquid mirror telescopes.

    • @JoseATurner
      @JoseATurner Před 3 lety +13

      I trust u cuz have big words

    • @sangnguyentan1911
      @sangnguyentan1911 Před 3 lety +1

      @@col0342 would you care to elaborate that for me please?

    • @sangnguyentan1911
      @sangnguyentan1911 Před 3 lety +2

      I think your explanation with the centrifugal force makes more sense; isn't the pressure what causes the water flow not otherwise?

    • @mikefochtman7164
      @mikefochtman7164 Před 3 lety +1

      @@sangnguyentan1911 I believe he's referring to the shape the water surface would form if you spin the entire beaker as I suggested.
      Near the very center, with centrifugal force very low and gravity, the shape of the surface would be nearly a flat plane. Only as the radius increases does the centrifugal force become significant and then the surface curves upward.
      This is exactly how a mirror for a reflector telescope is started. The final shape has to be ground precisely, but the basic concave shape is formed by 'spinning' the glass while still molten.

  • @aclearlight
    @aclearlight Před 4 lety +199

    Alternative explanation: the "air pocket" at bottom (under vac) is actually boiling water.

    • @m.b.82
      @m.b.82 Před 4 lety +23

      Yeah thats what i was thinking.
      Also, im intuitively thinking it is the water flow that submerges the ball.

    • @davidaustin3272
      @davidaustin3272 Před 4 lety +17

      I think you're right. The water boils and dissolved gasses come out of solution where the pressure is lowest in the center of the vortex.

    • @davidaustin3272
      @davidaustin3272 Před 4 lety +14

      Consider repeating this with very cold water and see if the lower vapor pressure makes a difference. Or measure the temperature after doing this experiment with warm water. The evaporation/boiling may have already chilled the water by the end of the experiment.

    • @davidaustin3272
      @davidaustin3272 Před 4 lety +7

      Or repeat it with a fluid that won't boil. (Something with a very low vapor pressure.) That's all I have for now.

    • @aclearlight
      @aclearlight Před 4 lety +1

      @@davidaustin3272 All good thoughts! Have I met a fellow chemist?

  • @system.machine
    @system.machine Před 4 lety +56

    You would need to also do the test with starting the whirlpool after the vacuum reaches least pressure for this to cover all the bases.

  • @jackswan3859
    @jackswan3859 Před 3 lety +6

    As has already been pointed out - Water boils under vacuum. The cooler the water is, the lower the atmospheric pressure needs to be to reach the boiling point. With a low enough pressure, tap water will boil at room temperature. Yes, that's a Fact!.
    If you place the ball on still water and then pull a vacuum, the water will boil all around the ball like a pan of water on the stove, only the water will NOT be hot to the touch. As the air is evacuated from the chamber water will reach a point at which it boils. Right after this, the vacuum gauge will stabilize and stop dropping until all the water is gone, then it will drop to whatever level your pump is capable of pulling on your vacuum chamber.
    In your experiment, the "air pocket" that formed under the ball while rotating the water is the water's gaseous state trying to reach the surface. This action creates a lifting force. The bubble formes in the middle of the vortex since this is the water's lowest pressure point.
    Going a little off subject. Something else interesting about water is it has a "triple point". That is the temperature and pressure at which the three phases (gas, liquid, and solid) can coexist in thermodynamic equilibrium. Under the correct circumstances, water can turn directly from ice (a solid) to gas without first becoming a liquid.

  • @rishabhjain6467
    @rishabhjain6467 Před 5 lety +194

    ACTION LAB!!
    ACTION LAB!!
    ACTION LAB!!
    Let the legend continue

    • @TheActionLab
      @TheActionLab  Před 5 lety +34

      Yo

    • @riveralley
      @riveralley Před 5 lety +2

      @@TheActionLab how tall are you? 6Ft?

    • @Green-mq6hj
      @Green-mq6hj Před 5 lety +1

      One of the first and hi

    • @jaswik2023
      @jaswik2023 Před 5 lety +4

      @@TheActionLab i think it was floating a bit because the air was getting pulled from the water so that force kept it up is what i think instead you should drop the Ball after a vacuum

    • @jowanmay6358
      @jowanmay6358 Před 5 lety

      very cool

  • @SamRobson
    @SamRobson Před 5 lety +475

    I swear one of those droplets of water hit my face when he was blowing the straw, so weird...

  • @PhysicsExperiments_dot_org

    Waauw Action Lab. You invented a simpel physics-setup that causes discussion among physicists! I envy you! I have my doubts about your explanation, but I cannot come up with a better one (yet).

  • @OrganicGreens
    @OrganicGreens Před 5 lety +4

    Man you constantly come up with original and interesting experiments. Happy to say this is not some pop science channel. Your really teaching lots of people obscure and interesting science.

  • @mikechu01
    @mikechu01 Před 5 lety +4

    You're always able to explain what you're doing really easily and the subjects are fascinating. Thanks

  • @vjbhrt
    @vjbhrt Před 5 lety +1

    Atmospheric pressure, Vortex, Effect of air movement
    all covered in just 1 short video... Awesome!

  • @xNecromancerxxx
    @xNecromancerxxx Před 5 lety +1

    As a college graduate in physics from 101-499, I didn't even expect this... I anticipated that no matter how low you drop the atmospheric pressure outside, the pressure will always be lower once the water starts spinning, there for keeping the ball at the bottom... Where did my calculations go wrong? I'm confused... Lol But anyways, no matter what I have learned in my lifetime, I always seem to learn something new on this channel! Keep up the good work!

  • @s.danial9363
    @s.danial9363 Před 5 lety +3

    It would be so much fun to have this kind of dad. Never gets boring

  • @uqbahkabir7864
    @uqbahkabir7864 Před 5 lety +5

    Each of these videos is worthy of a 10th grade science assignment. I sourced and got inspiration for one of my assignments in the action lab video about heating up water by blending/stirring it. I conducted my own experiments and ended up getting full marks. Thanks for the effort and information put into these videos.

    • @GraveUypo
      @GraveUypo Před 5 lety +3

      not sure if you meant that as praise or as an insult.

    • @monhi64
      @monhi64 Před 2 lety +1

      Lmao, I really thought you were roasting him.

  • @calyodelphi124
    @calyodelphi124 Před 5 lety +1

    That little experiment that you did with the straws also illustrates how carburetors work. As intake air flows at extremely high velocities into the barrel and through the venturi, it has extremely low pressure that sucks fuel out of the float bowl and into the intake to join the air rushing into the engine.
    Carburetors aren't used on cars anymore; they're exclusively fuel-injected now. But carburetors are still extremely common on GA aircraft, particularly those powered by Continental or Lycoming motors.

  • @youtubecensorspeace1874

    I am really into space stuff and I really like this video because it shows things we already know about gravity but on an extremely small scale that I never would have guessed to be shown on such a small scale. Tyvm for the upload.

  • @piotrgonta6238
    @piotrgonta6238 Před 5 lety +7

    Great experiment! Overall air pressure has no direct effect on the ball - it pushes it down (via water) as much as it pushes it up. But the lower pressure allows building of steam- bubbles. They gather in the middle where the pressure is low and they build eventually a vapor column that wants to go up and pushes up the ball. It would be interesting to see the experiment with slightly warmer or colder water...

    • @user-bh6ey1ke4n
      @user-bh6ey1ke4n Před 2 lety

      Better do it with some liquid with low vapor pressure, like mineral oil.

  • @joelseguin9014
    @joelseguin9014 Před 5 lety +35

    In the normal pressure part, is it really the pressure from the air that sinks the ball, or the fact that the moving water is moving faster below the ball than above ? Perhaps the high-pressure experiment will tell. In the low pressure experiment, the air vortex below is likely to be vacuum, and the ball seems to be just floating on the walls of the vortex. These are my hypotheses.

    • @yangzhou5530
      @yangzhou5530 Před 5 lety +1

      Agree. The velocity of the water below is faster than that above the ball, producing a downward force due to the pressure difference(in addition to the original pressure difference).

    • @walsakaluk1584
      @walsakaluk1584 Před 3 lety

      The ball is floating on the walls of the vortex.

  •  Před 3 lety

    This is the best video!!! I didn't expect that at all!!!! It made a full vortex even though there was an object there....

  • @peterbentleyhk
    @peterbentleyhk Před 4 lety

    Absolutely fascinating ! Many thanks indeed !

  • @55Ramius
    @55Ramius Před 5 lety +7

    Got my subscription box yesterday !! Bit late but hey, I am sure there were good reasons. It had more than I thought it would. Quality hoses, brass fittings, thread tape for fittings, 2 wrenches, a vac gauge, patch,sticker, pin, instruction book and experiment book ,box with marshmallows -balloons - shaving cream. I like it all. Hope the next one is a bit more timely but I am sure you all were making a great effort. Maybe you got more orders than expected or ?? Thanks..

    • @TheActionLab
      @TheActionLab  Před 5 lety

      Yes this one had some hold ups. They should be timely from here every three months...glad you liked it!

  • @soumyadey7387
    @soumyadey7387 Před 5 lety +2

    *_I really love how you simplify your videos and come up with awesome experiments that are cool to observe and simultaneously increase your knowledge_*
    *Keep up the good work man*

  • @jackjones1124
    @jackjones1124 Před 2 lety

    Stupendous visual at low pressures! Did you see that? the level of control of the ball height with pressure? Amazing

  • @alext9067
    @alext9067 Před 5 lety

    2:00 I'm just gonna add that centrifugal force is pulling the water outward causing a toroidal shaped circulating system. A vertical cross-section thru the centerline would show the flow directions to be clockwise on the left and counter-clockwise on the right side. That is why the water level rises when the spin starts. Oh, a little addition here. Forget air pressure. Gravity is pulling the ball down. Air pressure is a function of gravity. Low vacuum causing vaporization of water beneath the ball with cavitation. Water vapor evaporated off the water at low pressure is accumulating under the ball and creating a small pressure to move the ball up. All great videos.

  • @beastydrummer1
    @beastydrummer1 Před 5 lety +288

    Drink everytime he says: "lower pressure."

    • @ParaSheld
      @ParaSheld Před 5 lety +17

      I’d die from alcohol poisoning.
      He really thinks low of his viewers with 100 rehashes in a video. “Lower pressure, ok guys you get it now? Lower pressurezzzz”

    • @lukmly013
      @lukmly013 Před 4 lety +8

      @@ParaSheld Who said that you have to drink alcohol?
      And also what amount?

    • @cakeking8467
      @cakeking8467 Před 4 lety +10

      @@lukmly013 I think he thought drink drink

    • @Eagle8599
      @Eagle8599 Před 4 lety +2

      🍺

    • @the_hodgepodge
      @the_hodgepodge Před 3 lety +19

      I drinked evrytim he said those words n im not drink yet bud this is terrible grinking dame.

  • @mihaelpanjkrc7870
    @mihaelpanjkrc7870 Před 5 lety +41

    Experiment starts at 4:15

  • @johnrambo7897
    @johnrambo7897 Před 4 lety

    Thank you sir, you’re make it easy to understanding. Wish you all the best 🙏🏻

  • @orangequant
    @orangequant Před 4 lety

    Very enlightening (for me). Thank you.

  • @craigreustle2192
    @craigreustle2192 Před 5 lety +37

    "When water moves it creates a low pressure. This is because when water moves it creates a low pressure. We know this because when water moves it creates a low pressure. The pressure is low because the water is moving. When the water is not moving the pressure is not low. Blowing on this straw double proves everything i just said. Blowing on this clear straw triple proves it."

    • @willi-fg2dh
      @willi-fg2dh Před 4 lety +6

      question officially begged!
      [ note to many: "begging the question" doesn't mean what you think it means ]

    • @andriyshapovalov8886
      @andriyshapovalov8886 Před 4 lety +1

      Perhaps the easiest to grasp explanation of what forces are actually at work there.

    • @TlalocTemporal
      @TlalocTemporal Před 4 lety +2

      @@andriyshapovalov8886 -- Sounds more like calling out the circular argument.

    • @oipbhakeld
      @oipbhakeld Před 3 lety +2

      @@willi-fg2dh wow. no one else is supposed to know begging the question is misused by almost everyone.

    • @estermartin1823
      @estermartin1823 Před 3 lety

      @@willi-fg2dh you are drunk 😵

  • @berner
    @berner Před 3 lety +4

    You're the closest thing we have to a 2000's version of the late Professor Julius Sumner Miller.

  • @nugenki
    @nugenki Před 5 lety

    Very cool. I learned a lot. Never occurred to me low pressure is what causing the funnel

  • @deanlawson6880
    @deanlawson6880 Před 3 lety

    Very Cool experiment! Nicely done!
    The effect isn't what I would have thought would happen. Excellent!

  • @yehM8
    @yehM8 Před 5 lety +46

    I’m so glad this channel exists ♥️
    Yayyyyy I got a heart from Action Lab 😄

  • @michaelperrone3867
    @michaelperrone3867 Před 5 lety +75

    Right idea for the wrong reason: at lower pressure , the gas/water vapor bubbling out of the water will tend to collect under the ball. If that didn't happen, buoyancy would keep the ball where it was.

    • @TheActionLab
      @TheActionLab  Před 5 lety +22

      Hmmm...I don’t think you can attribute all of the air under the ball to dissolved air. It is not trapped under there like a plug. But I agree that this could be part of the mechanism. There is a lot going on here, there is water dragging the ball down due to no-slip condition at the surface of the ball. There is air/water vapor below the ball as you said probably pushing it up. There is air pressure above pushing the ball down that mostly goes away under vacuum. This is definitely interesting though

    • @zsocc101
      @zsocc101 Před 5 lety +6

      This is my idea too. I thought he will start the spinner under vacuum.

    • @Bob5mith
      @Bob5mith Před 5 lety +18

      I have a hard time believing the air pressure could fully submerge the ball. The water would have to be less dense than the air in the ball.
      I think it's the water flow. The vacuum allows the water to rise higher on the outside. With more water on the outside and no water in the center, the toroidal flow forcing the ball down is greatly reduced. Not only is the flow reduced, the surface are of the water contact is greatly reduced.

    • @DANGJOS
      @DANGJOS Před 5 lety +1

      @Henrik Wallin But why is the water going down in the middle?

    • @tbuyus8328
      @tbuyus8328 Před 5 lety

      @@TheActionLab what temperature was the water and what pressure did the vortex under the ball start forming?

  • @MattStryker
    @MattStryker Před 5 lety

    Again, I always learn something watching your videos, even though I'm 50. Please keep it up!

  • @mattm6178
    @mattm6178 Před 5 lety

    Many black hole applications with this experiment aswell! great vid.

  • @davidellsworth4203
    @davidellsworth4203 Před 5 lety +9

    Great experiment! I think the explanation needs some work, though.
    If it's just the air pressure pushing the ball down, then how does the ball "know" about the air pressure when it is already underwater? The only way the air pressure should be able to "communicate" downward through the water is by changing the pressure at the surface, which would only increase the total pressure at every point below globally. For the ball to be pushed downward all the way, there would have to be a gradient in pressure decreasing from top to bottom, a reverse of the gradient that would be there from gravity alone (when there's no vortex).
    So I think Joël Séguin's hypothesis is more likely - that air resistance friction slows down the vortex at the top, and those layers of slowed-down spinning water slow down the lower layers a bit less, creating a gradient in speed from top to bottom enough to allow Bernoulli's principle to reverse the gradient in pressure that the water would have from gravity alone. The air pressure would then only provide the initial push down, with the friction-slowdown gradient pushing the rest of the way.

    • @TheActionLab
      @TheActionLab  Před 5 lety +1

      Well I showed in a previous video that the pressure propagated through the water so it doesn’t matter whether something is underwater or not it still feels the lower vacuum. For example if I had a balloon underwater in the vacuum chamber And I lowered the pressure of the balloon with still expand in fact that’s what I did in previous video. There is probably an affect due to the dissolved air or water vapor under the ball also

    • @davidellsworth4203
      @davidellsworth4203 Před 5 lety +2

      Yes, lowering the air pressure on top of the water should lower the pressure of the water below, but it should do so globally. Thus, a change in air pressure alone should not be enough to make the net force on the ball in this vortex experiment, when it is already underwater, change from upward to downward or vice-versa (i.e. the direction of the pressure gradient should stay the same). Pressure-wise, having air on top should only increase the pressure everywhere below just like having some extra water on top (with vacuum above).
      And my guess would be that dissolved air should have a negligible effect in this vortex experiment (i.e. not qualitatively change the experiment's result).

    • @cennofranjo
      @cennofranjo Před 5 lety +1

      @@davidellsworth4203 I agree with you. It's not the air pressure that is pushing the ball downwards underwater. It's the pressure gradient. The same kind of pressure gradient that keeps the ball in the centre.
      Velocity of water will be higher near the bottom(as the strirer is at the bottom) than at the top surface of water. So pressure will be lower at the bottom. Same way velocity of water is high at the centre(so less pressure) and the ball tries to remain in the center.

    • @appmicro
      @appmicro Před 5 lety

      I'm sorry but there is no way I'm going to read all the comments above mine right now.

  • @Milkycookiez34
    @Milkycookiez34 Před 5 lety +191

    Who loves The Action Lab even tho he clickbaited us a few times?

    • @peacefulexaulter2160
      @peacefulexaulter2160 Před 5 lety +8

      In which vedio did he clickbated ?????

    • @Milkycookiez34
      @Milkycookiez34 Před 5 lety +6

      @@peacefulexaulter2160 The video which he talks about Vanta black

    • @atriyakoller136
      @atriyakoller136 Před 5 lety +24

      Even his clickbaits are scientifically interesting.

    • @Maxissc_
      @Maxissc_ Před 5 lety +2

      @@Milkycookiez34 that is a few times for you?? a few?

    • @praveenb9048
      @praveenb9048 Před 5 lety +3

      What he never does is bait and switch.

  • @kunalchakraborty3037
    @kunalchakraborty3037 Před 3 lety

    Initially my thought was same. Water drag. Really informative videi

  • @One_KHRN
    @One_KHRN Před 5 lety +1

    Love your work brother! Liked and Subscribed! 😊

  • @sanjayjayaraman872
    @sanjayjayaraman872 Před 5 lety +71

    I’m a simple man. Action lab posts a new video, I watch it. 😄😎

    • @bringingdatrapBack
      @bringingdatrapBack Před 5 lety +10

      Like begger

    • @Milkycookiez34
      @Milkycookiez34 Před 5 lety +6

      *Breathes in* Like if you agree!

    • @bringingdatrapBack
      @bringingdatrapBack Před 5 lety +2

      @@Milkycookiez34 Why do you like your comments?

    • @Milkycookiez34
      @Milkycookiez34 Před 5 lety +6

      @@bringingdatrapBack why do you?

    • @NETBotic
      @NETBotic Před 5 lety +2

      Finally some instructions on how to use the like button. It's so confusing, and I was getting very frustrated not understanding the complexities of the like button. Thanks for clearing that up!

  • @lucastornado9496
    @lucastornado9496 Před 3 lety +4

    I always thought it was because of the centrifugal force of the water spinning it wants to move outwards and in doing so creates a hole in the middle

  • @maninderbagga5598
    @maninderbagga5598 Před 2 lety

    Well done. Love your experiments..

  • @bossysmaxx3327
    @bossysmaxx3327 Před 5 lety

    Woah man this is it, what I was trying for a month, Now I understood the behavior of Blackholes, Your video gimme direction for my next experiment...........Now I'm gonna try it in my Next Javascript program with pure visualization..........

  • @sebbes333
    @sebbes333 Před 5 lety +14

    5:23 Correction, that is probably not air, it's probably vaccum or possibly "steam" from the dissolved air in the water.

    • @TheActionLab
      @TheActionLab  Před 5 lety +7

      Rarified air/water vapor

    • @appmicro
      @appmicro Před 5 lety +1

      Wiggle
      Wiggle
      Wiggle
      Wiggle
      Wiggle
      Wiggle
      Wiggle
      Wiggle
      Wiggle
      Wiggle
      Wiggle
      Wiggle
      Wiggle
      Wiggle
      Wiggle

    • @sebbes333
      @sebbes333 Před 5 lety +1

      @@appmicro Ok? :D

    • @PKamargo
      @PKamargo Před 5 lety +4

      @@TheActionLab It appeared right after you see bubbles of dissolved air into the water. These bubbles got trapped into the vortex motion under the ball, and caused the ball to raise up. I believe if this air or vapor has some way to escape from under the ball, the ball would sink again.
      It would be interesting if you find a way to remote control the stirring motor, and start the vortex after all air removed - including that dissolved in the water, or just stop and re-start it under vacuum to check my interpretation.

  • @rafaelthetall
    @rafaelthetall Před 5 lety +126

    i disagree with you conclusion: the ball goes down because of the water flow.
    when you reduce the pressure you boil the water and the tendency is the densest fluid go outward. this, then, creates a zone with water vapour instead of water, having less thrust downward.
    think of the stirrer as a pump that sends water from the bottom back to the top and you will understand.
    when the water vaporizes the pump starts to 'cavitate' and the total flow is reduced.
    this only happened because the vortex widened at the bottom. with a taller vessel or wider ball or a fluid that wouldnt evaporate at this low pressure (some polimer maybe?) you wouldnt see this effect.
    a test you can make to prove this is to fill the vessel to the brim with water and seal it. there is no air pressure and the ball will go down because of the 'convectional' water flow.
    you could even make a hole in the top of the lid and vacuum it and as far as there is no significant amount of water evaporated to start forming a cone the ball will stay down.

    • @protapper1645
      @protapper1645 Před 5 lety +18

      I totally agree with what you are saying his whole experiment just doesn't completely make sense to my

    • @3dprasad
      @3dprasad Před 5 lety +8

      Even I completely agree with you. For some reason I couldn't agree with the explanation even after showing a practical. I too think it's just the water flow and not the air pressure causing the ball raise

    • @Milan_Openfeint
      @Milan_Openfeint Před 5 lety +6

      Agreed. Maybe he could try it without the ball? The shape of the dip did absolutely nothing until the water started to boil. Doesn't that need an explanation?
      Or try it with a piece of polystyrene with plenty of holes drilled through, to let the steam escape.

    • @rafaelthetall
      @rafaelthetall Před 5 lety +9

      and, watching again i noticed another point: the 'air' beneath the ball is not air but water vapour that accumulated down there because the ball diverts the downward water flow from getting in the center of the spinner. bellow and above the ball where are gases (the 'inner cone') the pressure will be the same (a pressure low enough to evaporate water) . in the wet part of the ball are where the forces happens: buoyance and drag find equilibrium with that 'amount' of ball.
      the cone does not form by air pressure. it forms by inertia of the fluid climbing up the walls by the "velocity/energy" imparted unto it by the impeller, centrifuge forces and all that.
      by making the vessel closed at the top and filled to the brim you prove that: the water returns to the top and fills back the conical cavity without having the chance to climb.
      to see the flow you could add some purpurin or other solid particles.

    • @jaimeduncan6167
      @jaimeduncan6167 Před 5 lety +1

      Rafael Ramos da Costa boiling is not an other process, The ball is locked. Maybe there is something more than pressure going on, but simply boiling will not do from my perspective.

  • @Justiin_rm
    @Justiin_rm Před 5 lety +1

    love your explanation

  • @aeonscreed3603
    @aeonscreed3603 Před 5 lety

    Your thinking is next level man..dont know how you come up with this **** 👏👏👏👏

  • @dacoconutnut9503
    @dacoconutnut9503 Před 5 lety +21

    _No swimming in the chamber orchestra_
    (Does that even make sense?)

    • @starpuprl
      @starpuprl Před 5 lety

      No lul

    • @nathanoher4865
      @nathanoher4865 Před 3 lety +1

      Yes. Do not swim in the chamber orchestra room because it requires the room to be filled with water and water is bad for wooden instruments.

  • @uzytkownikgoogle9383
    @uzytkownikgoogle9383 Před 5 lety +6

    1:46 This sounds like dentist's tools. I hare this sound

  • @erickclaussen
    @erickclaussen Před 5 lety

    Excelente , gracias

  • @Qui-9
    @Qui-9 Před 4 lety +1

    Hey I have to commend you on your awesome videos, I've learned a lot!
    One thing I must offer up in this one is, in the first case, it actually sinks for two reasons. First, centrifugal force and buoyancy act outward instead of downward as with gravity only. Second, the mixer is a turbine. It's pumping, sucking the water down from the centre (where the ping-pong ball is) and throwing it outward and up the beaker walls.
    A common statement of Bernoulli's principle, the well established concept that a fast moving fluid is simply at lower pressure than anywhere downstream, is false. The common diagram of two large pipes connected by a smaller straight section of pipe, with a manometer connected midway in each section, showing reduced pressure at different points, may indeed work as depicted, but it is an incorrect way to measure pressure in a moving stream.
    The reason for the above is because of the effect of the boundary created by the measuring tube. The same effect is created by the trailing edge of a venturi, tending toward the suction which causes gas or droplet entrainment.
    The correct way to measure pressure would be to have a pressure transducer surface flush and nearly indistinguishable from the interior surface of the passage it is measuring. This way there is no disturbance to the flow, and so the pressure measurement would prove independent of flow.
    The diagram depicted above, applied to a venturi, with or without the correction last stated, would work as depicted because the measuring location is at a *_change_* of flow shape/velocity.

  • @ucchuman
    @ucchuman Před 5 lety +14

    Does the water in the straw rises up because blowing air above creates a low pressure, so the air in the straw goes out and rises the water up ? If yes, then why doesn't the air surrounding the straw replaces the blown air instead of the air inside the straw, just like the effect in the video of the table fan's back. I'd be glad if you'd answer. Not an entire video but just a reply would be more than enough.
    PS. I still praise the day when I'd found 5his channel 😍. Just a few days to go to finish binge-watching all the videos of AL

    • @theodorboon
      @theodorboon Před 5 lety

      uc_human If the idea is true, I think that they both do since there has to be some sort of equilibrium.

    • @zachxiong2657
      @zachxiong2657 Před 5 lety +6

      Instead of thinking about it like the air in the straw is leaving so it “sucks up” or pulls the water up, its more like the atmospheric pressure on top of the water in the beaker is pushing water down, causing water to go up the straw, like a mercury barometer. Normally pressure above the straw and above the beaker are the same, but when blowing air, the pressure above the straw is lower due to fluid air moving quickly (Bernoulli effect I think) so water is pushed up by the normal pressure air above the beaker

    • @ucchuman
      @ucchuman Před 5 lety +1

      @@x4002 this sounds satisfactory. Thanks

    • @abhirupmukherjee6405
      @abhirupmukherjee6405 Před 5 lety +2

      You're blowing the air above the straw away, so it creates a low pressure zone. And water rises to fill it up. Like a burning candle in a jar placed in a bowl of water

    • @rishabdeepak31
      @rishabdeepak31 Před 5 lety +1

      I thought that it was osmosis and diffusion

  • @erensaner
    @erensaner Před 5 lety +4

    Would you try to use a colored gas (should it not harm the mechanism of course) with the vacuum chamber so we can see the air leaving and entering the system? This particular experiment would be much better in my opinion

  • @cesarcervantes9971
    @cesarcervantes9971 Před 4 lety

    This was awesome, man!
    Very interesting!

  • @mouraddaoudi3424
    @mouraddaoudi3424 Před 4 lety

    This one was cool, thanks for sharing.

  • @justaverage8111
    @justaverage8111 Před 5 lety +34

    1:22 I thought it was his saliva

  • @smaker1377
    @smaker1377 Před 5 lety +22

    Can you start saying "Okay, this is epic"?

  • @nakulsri242
    @nakulsri242 Před 3 lety

    Thank you for thinking for us 🙋‍♂️

  • @shinybaldguy3569
    @shinybaldguy3569 Před 5 lety

    That was completely unexpected. Great episode!
    And thanks for not being run-of-the-mill. You come across like a kid playing with his toys rather than a science teacher with a curriculum to fill. It's a good example to set.

    • @shinybaldguy3569
      @shinybaldguy3569 Před 5 lety

      The outcome of the experiment was unexpected, not that it was unexpected that it was a great episode.
      Just being clear.

  • @DinPlayzRBLX
    @DinPlayzRBLX Před 5 lety +15

    15 views 27 likes 0 dislikes 17 comments
    CZcams is dizzy from the whirlpool

    • @lolibobpop9205
      @lolibobpop9205 Před 5 lety

      DinPlayz RBLX what 15 views 17 comments

    • @DinPlayzRBLX
      @DinPlayzRBLX Před 5 lety

      How come a video have 15 views and 2 likes? HOW? and 17 comments even tho its still 15 views!

    • @TheLocust830
      @TheLocust830 Před 5 lety

      Tom Scott explains it very well in "Why Computers Can't Count Sometimes". czcams.com/video/RY_2gElt3SA/video.html

  • @Alpha_Donk
    @Alpha_Donk Před 5 lety +4

    Is it possible it was the water boiling that was raising the ball? The vortex would funnel the bubbles to the center.

    • @zokyn
      @zokyn Před 5 lety

      interesting point of view there

    • @Alpha_Donk
      @Alpha_Donk Před 5 lety

      zokyn well, he pulled a vacuum and I didn’t see it’s typical boiling effect so who knows.

    • @myperspective5091
      @myperspective5091 Před 5 lety

      This was the first thought that I had too.
      It would be interesting to see this experiment done with a glass or clear plastic sphere done in a low to zero G environment. The ball should actually want to move to the middle center of the sphere. There should be a layer of gas bubbles that form around the outside of the ball.

    • @isaz2425
      @isaz2425 Před 3 lety

      that's also what I think

  • @billplatt9936
    @billplatt9936 Před 4 lety

    This is one of your better experiments, I thought it was good.

  • @bslef5924
    @bslef5924 Před 5 lety

    BeniSelf thanks you for posting and strengthening our society!!!!

  • @jowmind9277
    @jowmind9277 Před 5 lety +12

    “Im gonna suck water by blowing air”
    Starts spiting saliva

  • @AbrahimSabir
    @AbrahimSabir Před 5 lety +6

    action lab: your explanation isn't accurate. it's more to do with liquid flow than atmospheric pressure. also you are conveniently skipping the fact that at very low pressure the water is actually boiling at room temperature

  • @Les__Mack
    @Les__Mack Před 4 lety

    Yeah, you are brilliant and I love your stuff. Thanks once again.

  • @2792revs
    @2792revs Před 3 lety

    Action lab in action! Loved this experiment!

  • @gd1025
    @gd1025 Před 4 lety +6

    I think these conclusions are all mostly wrong and a little right. I think you will understand more if you dump a little glitter in the water.

  • @shade5554
    @shade5554 Před 5 lety +5

    Are you sure it was not your spit when you were blowing through the straw?

  • @blazer897gaming5
    @blazer897gaming5 Před 5 lety

    I like to see whirlpools and you just rediscovered it for me!!

  • @cosakti
    @cosakti Před 3 lety

    you deserve two thumps up for your effort to make this video.. nice job sir..

  • @BobMcCoy
    @BobMcCoy Před 5 lety +4

    *Put a mouse in the vacuum chamber*

    • @sovietbot6708
      @sovietbot6708 Před 5 lety

      That would harm the mouse. The animals he put in a vacuum chamber had exoskeletons, so they have a better chance in a vacuum chamber. While a mouse could survive, it will more inhumane.

  • @jaxnean2663
    @jaxnean2663 Před 5 lety

    Super great content as always, thanks 👍🏻

  • @TK422
    @TK422 Před 3 lety

    You can see clearer when it's clear! Love it! Also I thought that was an egg until he said "ball"

  • @hairtoss7975
    @hairtoss7975 Před rokem

    That was a beautiful experiment.

  • @chinh101
    @chinh101 Před 5 lety

    Very nice. Thanks for the lesson. Now I know how my airbrush works.

  • @DJpiya1
    @DJpiya1 Před 4 lety

    V nice work, thank u v much 😊😊👍

  • @shaanm1030
    @shaanm1030 Před 4 lety

    Love your experiments!!

  • @viniciusgregoryscalabrin3485

    Great video. Just a reminder, all these are described by Venturi, bernoulli, coriolis....
    I think would be a good idea to leave some references for people who want to go deeper. Again, great video, thanks for sharing

  • @letsreview3039
    @letsreview3039 Před 5 lety

    going to
    purchase the subscription box hopefully today

  • @rodrigorojas8054
    @rodrigorojas8054 Před 2 lety

    The 2 straws example is a great representation of how a carburetor works!

  • @poppedweasel
    @poppedweasel Před 5 lety

    You never fail to amaze me.

  • @dannyraven3926
    @dannyraven3926 Před 5 lety

    I love your channel but this is by far my favourite and unexpected visual sensation

  • @tlhomotsemoteme2423
    @tlhomotsemoteme2423 Před 5 lety

    It turns out that I am not good with science but I kinda like watching these kinda videos. Thank you for informing us.

  • @nachoperez6409
    @nachoperez6409 Před rokem

    I love your videos man, so interesting

  • @_Anim0sity_
    @_Anim0sity_ Před 2 lety

    Very educational.

  • @KenAnthony69
    @KenAnthony69 Před 3 lety

    I almost watch your all vids! I also want to be a scientist, u inspired me a lot!
    I wish i have a dad like you🥺

  • @jimswenson9991
    @jimswenson9991 Před 5 lety +1

    I imagine this situation involves gravity, centripetal force, surface tension, and maybe viscosity. Plus vapor pressure when the vacuum gets high. (Those alone are enough to make it hard to figure out, too!) Atmospheric pressure only matters in that it pushes closed the vapor bubble at the bottom. I don't think higher pressure will change anything relative to atmospheric. But congrats on finding some unexpected behavior!

  • @realcygnus
    @realcygnus Před 5 lety

    one of your best yet

  • @Ratlins9
    @Ratlins9 Před 3 lety

    Excellent videos and presentation is done well.

  • @OverlandOne
    @OverlandOne Před 3 lety

    Very cool. I had no idea this would happen.

  • @ProLogic-dr9vv
    @ProLogic-dr9vv Před 5 lety

    Sarting at time mark 5:03 ; Upper vortex VS lower vortex,,, WOW!!!!! this video is great , Super.

  • @ozzymandius666
    @ozzymandius666 Před 5 lety

    That was fascinating.

  • @tomasotreasaigh111
    @tomasotreasaigh111 Před 5 lety

    Great video, thank you and have a good day.

  • @barzadar7707
    @barzadar7707 Před 5 lety

    Wow!!!
    I just found your channel and subscribed right away what A GREAT channel😍

  • @prawnmikus
    @prawnmikus Před 4 lety +2

    Could you build a reed switch or IR switch to control the stirrer so you can turn it on after vacuum is applied?
    Also, maybe the air under the ball is due to the water being on the cusp of boiling. You could try very cold water vs warm water and see if the boiling point changes things.
    Very interesting and cool.

  • @davidbergmann8948
    @davidbergmann8948 Před 4 lety

    Very neat, Action! 🍄

  • @Bystander333
    @Bystander333 Před 5 lety

    The ball is sealed. It's clearly a lot bigger when it starts to float but the density of the entire ball must be higher than than the "free" stuff around it. So it should sink even harder than it did before.
    Nice experiment!

  • @MattH-wg7ou
    @MattH-wg7ou Před 8 měsíci

    Really cool video idea! Awesome job! You need a pressure chamber now!