A Very Nice Geometry Problem | You should be able to solve this | 2 Methods

Sdílet
Vložit
  • čas přidán 5. 09. 2024
  • A Very Nice Geometry Problem | You should be able to solve this | 2 Methods
    MY OTHER CHANNELS
    ••••••••••••••••••••••••••••••••
    Calculus Booster : / @calculusbooster
    Math Hunter : / @mathshunter
    --------------------------------------------------------------------------------
    Join the channel to become a member
    / @mathbooster

Komentáře • 38

  • @brettgbarnes
    @brettgbarnes Před 2 měsíci +2

    Based on the starting diagram and information, it cannot be deduced that AC is tangent to the circle at point C. That assumption was not given until after the solution began.

    • @Grizzly01-vr4pn
      @Grizzly01-vr4pn Před měsícem

      That's just not true. If BC is the diameter of the semicircle, and also a side of the triangle, then AC cannot be anything other than a tangent at point C.
      If it was a tangent at any point on the semicircle other than point C, then the horizontal base of the triangle would be longer than the semicircle diameter.
      If the horizontal base of the triangle was equal to the semicircle diameter, but AC wasn't a tangent, then it would be a secant to either the semicircle as shown (intersecting the arc above BC), or the reflected semicircle below BC.

    • @brettgbarnes
      @brettgbarnes Před měsícem +1

      @@Grizzly01-vr4pn "If BC is the diameter of the semicircle, and also a side of the triangle, then AC cannot be anything other than a tangent at point C."
      Line AC can intersect with diameter BC at any angle in-between (but not including) 0 and 180 degrees. However, the only angle at which line AC could intersect with diameter BC, tangent to the circle at point C, is 90 degrees. There's no indication on the diagram that angle ACB is 90 degrees and there's no way to deduce that it is or that AC is tangent to the circle at point C.

    • @Grizzly01-vr4pn
      @Grizzly01-vr4pn Před měsícem

      @@brettgbarnes Please re-read my second paragraph in my above comment.
      The fact that AC _only_ intersects with BC at point C means it _must_ be a tangent. If it were not a tangent, but still intersected at point C, it would also intersect with the circumference at a second point. It would be a secant line.

    • @brettgbarnes
      @brettgbarnes Před měsícem

      @@Grizzly01-vr4pn
      Yes, by definition, line AC only intersects with line BC at point C on the circumference, but that doesn't prove that line AC is tangent to the circumference at point C.
      Yes, "if it were not a tangent, but still intersected at point C, it would also intersect with the circumference at a second point." That's true, but only if angle ACB is less than 90 degrees and that would be an assumption that can't be proven from information on the starting diagram. If angle ACB is greater than 90 degrees, line AC would not "intersect with the circumference at a second point."
      The only case in which line AC could be tangent to the circumference at point C is if angle ACB is 90 degrees and, again, there is no way of knowing that from the information given at the start.

    • @Grizzly01-vr4pn
      @Grizzly01-vr4pn Před měsícem

      @@brettgbarnes it certainly would intersect the circumference at a second point, that point being on the 'lower' unseen semicircle, that completes the full circle.

  • @fphenix
    @fphenix Před 2 měsíci +3

    I started like Method 1, but once I had the 2√5 length, I used the tan() in B.=> tan(DBC) = 2√5 / 4 = √5/2 = tan(ABC) = x / 6. Hence 2.x = 6.√5, so x = 3√5

  • @bpark10001
    @bpark10001 Před 2 měsíci +1

    In 1st method, you need not solve for DC. It is simpler to solve for AB. Using same triangle similarity, BD/BC = BC/AD. From this you get BD = 9. Then you can use Pythagoras to get AC squared = 81 - 36 = 45.

    • @rabotaakk-nw9nm
      @rabotaakk-nw9nm Před 2 měsíci

      👍, but BD/BC=BC/AB => AB=9
      Or, AD=AB-BD=9-4=5
      AC²=AD•AB=5•9=45 😉

  • @juanalfaro7522
    @juanalfaro7522 Před měsícem

    cos (B) = 4/6 = 6/AB -> AB=9 -> X^2 = 9^2 - 6^2 = 45 -> X = 3*sqrt (5). Another way: AB = 4+a = 9 in previous step. Now X^2 = a * (4+a) = (9-4) * 9 = 5*9 = 45 -> X = 3*sqrt (5). A 3rd way: cos (B) = 2/3 --> sin (B) = sqrt (5)/3 = X/AB where AB=9 determined in previous methods --> X = 9*sqrt (5)/3 = 3*sqrt (5).

  • @Mediterranean81
    @Mediterranean81 Před 2 měsíci +1

    Use the tangent secant theorem
    x is the tangent
    BD is the secant
    So AD=x^2/4
    AB= 4+x^2/4
    AB^2= 16+2x^2+x^4/16 (1)
    ABC is a right triangle
    So AB^2=BC^2+AC^2
    AB^2 = 36+x^2 (2)
    Let x^2= u
    Compare (1) and (2)
    16+2u+u/16=36+u
    256+32u+u=16u+576
    32u+u-16u=576-256
    15u=320
    3u=64
    u=64/3
    x=8/sqrt 3

  • @Irtsak
    @Irtsak Před měsícem

    Let CD ( construction )
    Obviously CD⊥AB.
    In right triangle ABC => BC²=AB·BD => 6²=AB·4 => AB=9
    AD=AB-BD=9-4=5
    Also in the same triangle : AC²=AB·AD =>x²=9·5 => x=3√5

  • @machintruc8302
    @machintruc8302 Před 2 měsíci +1

    Cos(dbc) = cos(abc) = BD/BC = BC/BA
    So BA=BC²/BD=6²/4=9
    Then
    AB²=BC²+AC²
    9²=6²+x²
    x²=81-36=45
    x=v(45)=3v(5)

  • @WahranRai
    @WahranRai Před 2 měsíci +1

    9:11 The theorem is the *Power of a point* relative to a circle

  • @JobBouwman
    @JobBouwman Před 2 měsíci

    Thales tells DC = sqrt(6^2 - 4^2)=2sqrt5.
    Congruency tells that AC = 6/4*2sqrt5.
    So AC = 3sqrt(5)

  • @quigonkenny
    @quigonkenny Před 2 měsíci

    Let O be the center of the semicircle. Draw radius OD. OD = OB = BC/2 = 6/2 = 3. As OB = OD, ∆BOD is an isosceles triangle and ∠DBO = ∠ODB = θ.
    Triangle ∆BOD:
    cos(θ) = (OB²+DB²-OD²)/(2(OB)DB)
    cos(θ) = (3²+4²-3²)/(2(3)4)
    cos(θ) = (9+16-9)/24
    cos(θ) = = 16/24 = 2/3
    sin(θ) = √(1-cos²(θ))
    sin(θ) = √(1-(2/3)²)
    sin(θ) = √(1-4/9)
    sin(θ) = √(5/9) = √5/3
    tan(θ) = sin(θ)/cos(θ)
    tan(θ) = (√5/3)/(2/3) = √5/2
    CA/BC = √5/2
    √5BC = 2CA
    6√5 = 2x
    x = 6√5/2 = 3√5 units

  • @marcgriselhubert3915
    @marcgriselhubert3915 Před 2 měsíci

    O the center of the circle, and t = angleCBA,
    In triangle OBD: OD^2 = BO^2 + BD^2 -2.BO.BD.cos(t)
    So, 9 = 9 + 16 - 2.3.4.cos(t), and cos(t) = 2/3
    Then 1 + (tan(t))^2 = 1/(cos(t))^2 = 9/4,
    then (tan(t))^2 = 5/5 and tan(t) = sqrt(5)/2
    In triangle CBA: X = CA = BC.tan(t) = 6.(sqrt(5)/2)
    Finally: X = 3.sqrt(5).

  • @Captain_Thunder_22
    @Captain_Thunder_22 Před 2 měsíci +3

    Wow ... Good video ❤

  • @santiagoarosam430
    @santiagoarosam430 Před 2 měsíci

    Llamamos E a la proyección ortogonal de D sobre BC → 6²-4²=DC²→ DC=2√5 → BC*DE=BD*DC→ DE=4√5/3 → BD²-DE²=BE²→ BE=8/3 → DE/BE=AC/BC→AC=X=3√5 =6,7082....
    Gracias y un saludo cordial.

  • @MarieAnne.
    @MarieAnne. Před měsícem

    When solving, you say that ∠ACB = 90° because AC is tangent to semi-circle (and radius and tangent are perpendicular), but when stating the problem, you don't mention that AC is tangent to semi-circle, and we can't assume it's tangent just because it looks tangent.

  • @murdock5537
    @murdock5537 Před 2 měsíci

    ∆ ABC → BC = 6; AB = AD + BD = y + 4; CD = z; AC = x; ABC = δ
    sin⁡(BCA) = sin⁡(CDB) = 1 → z = 2√5 → tan⁡(δ) = z/4 = √5/2 = x/6 → x = 3√5 → y = 5

  • @sergeyvinns931
    @sergeyvinns931 Před 2 měsíci

    Нарисовано коряво! Но DC^2=36-16=20, DC=2\/5, DC/x=4/6, 2\/5/х=2/3, 2х=6\/5, х=3\/5, найдём гипотенузу АВ,
    AB^2=[^2+BC^2=45+36=81, AB=9. А нарисовано так, что АС=ВС?

  • @user-ll5wl9gq4x
    @user-ll5wl9gq4x Před 2 měsíci +1

    Thanks for the beautiful ideas!!

  • @imetroangola4943
    @imetroangola4943 Před 2 měsíci +1

    Parabéns 💐👏🏻 são excelentes seus vídeos!

  • @giuseppemalaguti435
    @giuseppemalaguti435 Před 2 měsíci

    DC=√20...4:√20=√20:AD..AD=5..x^2=(4+5)^2-6^2=45

  • @haiduy7627
    @haiduy7627 Před 2 měsíci +1

    🎉🎉🎉🎉🎉🎉🎉

  • @yakupbuyankara5903
    @yakupbuyankara5903 Před 2 měsíci

    X=3×(5^(1/2)).

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 Před 2 měsíci

    (4)^2H/A/BDASino°=16H/A/DBASino° (6)^2 A/H/BCoso°= 36A/H/BCCoso° {16H/A/BDASino°+36A/H/BCCoso°}= 52HA/AH/BDASino°BCCoso° {180°/52HA/AH/BDASino°BCCoso°} =3 .24 HA/AH/BDASino°BCCoso° 3 .4^6 3.2^23^2: 1.1^1 3^2 3^2: (HA/AHSino°BDABCCoso° ➖ 3HA/AH/BDASino°BCCoso°+2)

  • @reolee924
    @reolee924 Před měsícem

    It was wrong solution.
    Hiw can say 90 degree of anggle BCD?

  • @michaeldoerr5810
    @michaeldoerr5810 Před 2 měsíci

    Based on one of the liked comments from Math Booster, there might actually be THREE methods. Just like the last video. I shall have to practice all three methods then!

  • @Tmwyl
    @Tmwyl Před 2 měsíci

    I got this one!

  • @SumitVerma-lg3qh
    @SumitVerma-lg3qh Před měsícem

    I solved it using 2nd method

  • @haiduy7627
    @haiduy7627 Před 2 měsíci +1

    ❤❤❤❤❤❤❤🎉🎉😊😊😊❤❤❤❤🎉🎉🎉🎉