Going Nuclear to Desalinate Seawater

Sdílet
Vložit
  • čas přidán 7. 06. 2024
  • Water, water, everywhere and not a drop to drink. Humans need freshwater and getting enough of it is an ever-present challenge.
    Yet the earth is covered in water! Over half of the planet is ocean! The problem of course is that you cannot drink it because it is too salty.
    Desalination is the process of removing salts from salty sea and brackish water to produce freshwater. The goal is simple, but the technologies are complicated and energy intensive. And we often power these processes with oil.
    Ideally, we do not want to burn any more fossil fuels to get this water. And that is why people sometimes want to use nuclear energy to power the whole process.
    Errata:
    10:00 - Finland is part of the EU and thus is subject to EU tritiated water limits. Thanks to Axis for pointing this out.
    Links:
    - The Asianometry Newsletter: asianometry.com
    - Patreon: / asianometry
    - The Podcast: anchor.fm/asianometry
    - Twitter: / asianometry

Komentáře • 1,5K

  • @Jim54_
    @Jim54_ Před 2 lety +163

    Our rejection of Nuclear power was a massive mistake, and the environment has payed dearly for it as we continue to rely on fossil fuels for our electricity

    • @TheBooban
      @TheBooban Před 2 lety +8

      There needs to be a solution for the waste. Burying it isn’t good enough. Reactors that re use the waste that results in a shorter half life seems to be just talk.

    • @thefbat5847
      @thefbat5847 Před 2 lety +26

      @@TheBooban nuclear waste is still much better than all the fossil fuel waste we've had. There's also a lot of research into nuclear fuel reprocessing such as hollow fiber ionic liquid reduction exchange process.

    • @LoneWolf-wp9dn
      @LoneWolf-wp9dn Před 2 lety

      @@TheBooban ahhh putins shill are already here

    • @squee222
      @squee222 Před 2 lety +7

      fun thing about historical fictions is that you never actually know what the outcome would have been if history played out differently. To assume there would be no issues with nuclear if we fully embraced it, I think is naive.

    • @squee222
      @squee222 Před 2 lety +1

      @@thefbat5847 only reason nuclear waste isn't as big a deal as fossil fuel waste is that nuclear only accounts for a small fraction of our total energy consumption.

  • @phlodel
    @phlodel Před 2 lety +741

    Many years ago I had a neighbor, Paul Kunming, who was a retired Westinghouse nuclear power engineer. He said Westinghouse made a major error by not incorporating desalination plants with nuclear power plants. If coastal cities could have a water supply, they'd want nuclear power plants.

    • @monad_tcp
      @monad_tcp Před 2 lety +63

      It totally makes sense to use waste heat from the cooling system to power the desalination process. The solution for excess heat being dumped from nuclear plants on the ocean was right there ! use it to remove the salt, and have fresh drinking water.

    • @mikeall7012
      @mikeall7012 Před 2 lety +18

      Utilities would have retired them if they were included. The vast majority of US based Nukes have water purification plant. They are very rarely used and most plant have abandoned their purification systems. Instead most nuke sites rents RO trailers from GE or other 3rd party companies and use city water for the feed.

    • @lelandthomosoniii4743
      @lelandthomosoniii4743 Před 2 lety +1

      Good point.

    • @phlodel
      @phlodel Před 2 lety +29

      @@mikeall7012 I'm not referring to the small water purification systems have for use by their processes. I mean large scale plants to supply water for domestic and agricultural use. As in, the power plant would be the municipal supply.

    • @trentallman984
      @trentallman984 Před 2 lety +10

      Ocean going ships use the heat from the engines to make fresh water by lowering the pressure in a tank. It therefore boils at a lower temperature.

  • @CatFish107
    @CatFish107 Před 2 lety +206

    Had 3 separate msf plants on the cruise ship I worked on. It utilized waste heat from the main engines, so our water production would scale with ship speed(engine load)

    • @MaxB6851
      @MaxB6851 Před rokem +15

      Three days after leaving Sydney on a cruise ship we noticed our cups of tea tasted slightly salty.
      That was because the fresh water taken on in Port Jackson had been used up and we were now using desalinated water.
      No problem, we changed over to coffee and didn't notice a salty taste again.

    • @1mezion
      @1mezion Před rokem +19

      @@MaxB6851 personally I think once you can taste any salt in the water that is not good

    • @SharukhSaifi
      @SharukhSaifi Před rokem

      @@1mezion I am not an expert but I think the same.

    • @Alucard-gt1zf
      @Alucard-gt1zf Před rokem +10

      @@MaxB6851 the whole point of desalination water is that's its not meant to taste salty

    • @1mezion
      @1mezion Před rokem +2

      @@Alucard-gt1zf exactly

  • @nictamer
    @nictamer Před 2 lety +706

    One fact in favor of nuclear power should be pointed out: radioactivity is very easy to measure. Much easier than any other contaminant in water. It's a non issue.

    • @BuddyLee23
      @BuddyLee23 Před 2 lety +36

      A very helpful fact when one of your nuclear plants goes full Fukushima and you can tell the world exactly how much contaminated seawater you have released into the ocean 😄

    • @gaius100bc
      @gaius100bc Před 2 lety

      ​@@BuddyLee23 Try to measure how many lives were lost due to Germany switching off their nuclear reactors and ramping up their coal and gas stations, fuelled with stuff bought from tyrannical countries around the world, who then went on to invest their euro profits in to guns, wars, murder and genocide - pretty hard to measure.

    • @jinruizhang
      @jinruizhang Před 2 lety +99

      @@BuddyLee23 no much after a while because of how humongous the ocean is actually. The waters are constantly moving as well. The average levels lowers down to an insignificant one not too long afterwards.

    • @RanEncounter
      @RanEncounter Před 2 lety +145

      @@BuddyLee23 If you believe that Fukushima made a meaningful impact in contaminating our oceans in the topic of making drinking water, you have a lot to learn about the amount of contamination released by Fukushima.
      Sure a part of ocean sealife suffered from the contamination, but it is far from the catastrophe the media has painted.

    • @nicholasstarinsky3357
      @nicholasstarinsky3357 Před 2 lety +9

      ROFL. "Easy to measure", impossible to clean up once it goes boom.

  • @AlexBesogonov
    @AlexBesogonov Před rokem +83

    One interesting note, dedicated desalination reactors can be MUCH cheaper than energy-generating reactors. That's because they don't need to pressurize the water to keep it liquid at very high temperatures. A desalination reactor can just pressurize water to just 4 atmospheres, raising the boiling point to about 140C. 4 atmospheres is easy to work with, it's less than the pressure in your faucet.

    • @thegreyghost5846
      @thegreyghost5846 Před rokem +4

      Or you could use high temperature gas cooled reactors or molten salt reactors to generate electricity and use the waste heat to desalinate the water.

    • @AlexBesogonov
      @AlexBesogonov Před rokem +1

      @@thegreyghost5846 Sure. But then the reactor cost will be dominated by the energy-generating part.

    • @Aereto
      @Aereto Před rokem +3

      @@AlexBesogonov
      If people keep pushing towards electric vehicles for short range travel and commute, the transition can cause more strain to the power grid than green energy can keep up and have to resort to other fuel sources for on-demand power or baseline power.
      Hybrid systems are never cheap, but they make efficient use of resources by not letting the work go to waste. Using nuclear or other waste heat generating sources made for other purposes to desalinate water is more useful than you think.
      We don't get to have geothermal power or desalination unlike some countries, so best you count your blessings before you lose them.

    • @grast5150
      @grast5150 Před rokem +7

      Alex and Aereto, you are both correct. We need both water and power. If we can push the use of nuclear for water product and have plant operate cheaply and with out issue, we can finally maybe change the public relation of nuclear is bad. Then we can talk about getting nuclear power online which is the only way to get off fossil fuels.

    • @thekinginyellow1744
      @thekinginyellow1744 Před rokem +1

      "...pressure in your faucet" uh, maybe in your country, but not in mine. only 2 ATM. sucks too, cause it used to be higher before "water saving measures"

  • @StevieinSF
    @StevieinSF Před 2 lety +93

    I've been saying this for years - In California, PG&E should work with the sate water agencies to repurpose Diablo Canyon for desalination. Pump the fresh water generated up over the coastal range and into the California Aqueduct.

    • @davidlangford1165
      @davidlangford1165 Před rokem +9

      Excellent informative video. The “greens” should pay attention.

    • @ivanlozano2019
      @ivanlozano2019 Před rokem

      @@davidlangford1165 they won't. They are useful idiots to push half baked technologies that wouldn't and couldn't stand on their own yet, and increase energy profits.

    • @Clean97gti
      @Clean97gti Před rokem +6

      They still have San Onofre sitting there doing nothing. A couple new small modular reactors and a desal plant instead of the old broken steam generators and they'd be in business. Then pump the brine up and over the mountains and store it in the Salton Sea. The containment buildings are still in place at San Onofre, just need the reactors to stick inside.

    • @blastermanr6359
      @blastermanr6359 Před rokem +1

      "Just pump over the costal range." That a major challenge by itself.

    • @Clean97gti
      @Clean97gti Před rokem +7

      @@blastermanr6359 kind of. The pumping requirements are not trivial. It takes a lot of electricity to do it, but the engineering part is pretty well established at this point. It's more a political and financial problem.

  • @SubvertTheState
    @SubvertTheState Před 2 lety +7

    I used to operate an MED for the purpose of concentrating grape juice. Kinda bothered me that we dumped millions of gallons of process water from the juice, as well as thousands of gallons of Ethanol down the drain. It costs a fairly good amount in wastewater treatment and i just think its stupid to dump fuel down the drain. This type of inefficiency is everywhere across food industry and i hope it gets some attention.

  • @TheColinputer
    @TheColinputer Před 2 lety +272

    As an Australian. Im just like WTF is with our tritium drinking limit

    • @SamSam-qk5zr
      @SamSam-qk5zr Před 2 lety +91

      The thing is the tritium limits are just decided randomly without any scientific basis. Even with australian levels they haven't proved tritium is dangerous to health.

    • @gregorymalchuk272
      @gregorymalchuk272 Před 2 lety

      @@SamSam-qk5zr They aren't random. They are deliberately chosen for ideological reasons to make it impossible to use nuclear energy.

    • @ravenlasky5286
      @ravenlasky5286 Před 2 lety +79

      "The Australian blood is probably full of tritium. This is a valuable resource. How can we extract it?" -Count Dracula

    • @AsbestosMuffins
      @AsbestosMuffins Před 2 lety +21

      you guys also have really high levels of arsenic in your ground water as well with no apparent adverse effects

    • @madsam0320
      @madsam0320 Před 2 lety

      @@SamSam-qk5zr tritium is radioactive, retained like water inside our body if ingested and cause cancers, especially to our organs.

  • @maarten176
    @maarten176 Před 2 lety +28

    Thanks for making all these videos they are very unique and always very interesting topics. I learn so much from them

  • @RenegadeRanga
    @RenegadeRanga Před 2 lety +215

    Salt cooled nuclear in 1973, well I didn't know the tech was that old. They are working full speed on the molten salt reactors now. Definitely the best method of desalination.

    • @richardscathouse
      @richardscathouse Před 2 lety +20

      Back to the 1950s in fact,

    • @kokofan50
      @kokofan50 Před 2 lety +10

      That’s a sodium metal cooled reactor

    • @eckligt
      @eckligt Před 2 lety +37

      Just to underline kokofan's point: Sodium does not equal salt. Sodium here refers to pure, metallic Sodium, not a compound that includes Sodium such as Sodium-Chloride a.k.a tablesalt.
      That being said, the US operated the world's first Molten-Salt Reactor in the 1960's at Oak Ridge, Tennessee.

    • @RenegadeRanga
      @RenegadeRanga Před 2 lety +4

      @@eckligt fair enough mate.

    • @rashidisw
      @rashidisw Před 2 lety +2

      pure metalic sodium, I remember seeing that being thrown to body of water and then BOOOM, lots of dead fish.

  • @mariuscheek
    @mariuscheek Před 2 lety +70

    It's a no-brainer. The inherent safety and compactness of MSRs, along with their very high heat output, make them ideal for all sorts of industrial processes. Much of industry like steel etc needs heat rather than electricity

    • @SpeedemonR1
      @SpeedemonR1 Před 2 lety

      No brainer, if you don't have a brain, just like Justin Bieber

    • @Olivia-W
      @Olivia-W Před 2 lety +1

      I wish we could split the planet for pro nuclear and anti nuclear people.
      The pro nuclear side would quickly go to a lot more fresh water, probably cheaper energy over the long run, generally progress... let's add hydrogen production to that and move to hydrogen cars while we're at it.
      Then a while after we can leave the planet with the anti-nuclear peeps...

    • @rickcostin
      @rickcostin Před 2 lety +4

      Until there is a war or a flood or an earthquake it's safe....

    • @whathell6t
      @whathell6t Před rokem +1

      @@rickcostin
      Basically, California.

    • @andrewk3210
      @andrewk3210 Před rokem +11

      1. Switch from nuclear to solar in Germany where engineers are abundant and sun is scarce
      2. Construct nuke plants in deserts
      3. ???
      4. Profit!

  • @GeneralThargor
    @GeneralThargor Před 2 lety +67

    Another exceptional video, with excellent dictation. Your mastery of English is better than most native English speakers. Keep doing what you do in your style, its very much appreciated. Thank you.

    • @Asianometry
      @Asianometry  Před 2 lety +27

      This helps me feel better after all the pronunciation corrections

    • @circuit10
      @circuit10 Před 2 lety +9

      @@Asianometry You're not a native English speaker? I knew you lived in Taiwan but I thought that English must be your first language because you have no accent at all (that I can recognise at least)

    • @rickcostin
      @rickcostin Před 2 lety +1

      General Disaster ...Is the name inherent when talking about the nuclear industry

    • @M-Cycle
      @M-Cycle Před 2 lety

      @@Asianometry There is another desalination technology - Humidification-Dehumidification. Here is a video - how it works and how it is better than traditional desalination tech. Would you like to talk about new tech on your channel? czcams.com/video/NzdNwKBVXT8/video.html

    • @richardcowley4087
      @richardcowley4087 Před 2 lety

      @Amethyst amercans do not speak English
      you lot speak pidjin english

  • @ristekostadinov2820
    @ristekostadinov2820 Před 2 lety +269

    I'm surprised in countries that have deserts there aren't even an prototype of concentrated solar desalination plant.
    Edit: I see in the replies many people miss understood what i mean, i don't mean solar panels. Concentrated solar is made with mirrors pointed to an object in this example massive glass dome filled with water.

    • @luc_libv_verhaegen
      @luc_libv_verhaegen Před 2 lety +54

      Are you talking direct evaporation from concentrated solar, or are you talking about using concentrated solar to high yield solar cells?
      The energy needed to evaporate a cubic meter of water is 627kWh. This figure ignores heating the water, as you need only 91kWh to get from 20 to 100degrees, and that figure is dwarfed by the energy needed to evaporate the water.
      The energy needed to create 1 cubic meter of desalinated water from seawater through reverse osmosis is 2.5-4.0kWh. This is at least 150x times better.
      Why you need nuclear for this is beyond me, any country that needs desalinated water has excellent solar irradiation, and RO can happily be run only when excess energy is available.

    • @AsbestosMuffins
      @AsbestosMuffins Před 2 lety +44

      @@luc_libv_verhaegen problem is water systems have to run 24-7 so you need a baseline, not strictly a deal breaker though, plus ideally you'd be desalinating to fill reservoirs to help with shortages

    • @ihmpall
      @ihmpall Před 2 lety

      These countries usually wait for western or south Asian Asian countries to invent stuff.

    • @ImaskarDono
      @ImaskarDono Před 2 lety +9

      @@luc_libv_verhaegen I think, start/stop cycles will destroy the equipment. Or at least make it really hard to pay off, since "excess" is only a few hours per day.

    • @majicdude88
      @majicdude88 Před 2 lety +21

      Desert environments, particularly in the Middle East and the Sahara, have crazy sandstorms that would destroy/bury solar panels.

  • @punditgi
    @punditgi Před 2 lety +8

    Most informative. Thanks for the video!

  • @Hossak
    @Hossak Před 2 lety +66

    Modern desal plants are up to 90% water recoveries these days - very impressive. That minimises the input flow as well as the sea critters it effects. You then combine the brine outflow with the treated sewage outflows and bingo bango. Let's roll.

    • @FrankGarcia24
      @FrankGarcia24 Před 2 lety +6

      I wonder what ratio of brine to treated sewage are needed

    • @Hossak
      @Hossak Před 2 lety +3

      @@FrankGarcia24 Don't forget stormwater runoff. That is not a zero figure.

    • @Hossak
      @Hossak Před 2 lety +1

      @@FrankGarcia24 That can also be used for dilution. It starts to balance out yeah?

    • @nealtauss1715
      @nealtauss1715 Před 2 lety +3

      ... how does 'dilution' NOT fail.... at Scale.....

    • @Hossak
      @Hossak Před 2 lety +12

      @@nealtauss1715 Every city and it's surround catchment is a significant surface area. A great majority of a modern city is covered with concrete/bitumen/smooth surfaces that have minimal water take-up. That means a lot of rainfall tends to end up as storm surge or in the associated seaward discharge systems of that city. Probably all of that water is not good enough quality to drink however it is ideal to dilute any saline/brine from a desal plant with some simple storage/surge capacity. Thus you should be able to offset the brine production through dilution from sewage/water runoff systems.

  • @americanarchipelago
    @americanarchipelago Před rokem +2

    You did a great job with this. Awesome channel...

  • @stephanhazeu7317
    @stephanhazeu7317 Před 2 lety +102

    Newer Molten Salt Reactors operate at higher temperatures, 450-650 range. Combining this with CO2 gas generators, which have as intake temperatures roughly around the same temperatures 500+ degrees, also means that the temperatures of the output of these generators is around 250 to 300 degrees. This allows for a even higher energy transfer efficiency than older PWR reactors.
    Furthermore, even the temperatures that come out of an MSR are warm enough as is to generate Hydrogen without first having to turn the heat into electricity (eliminating the efficiency loses related to heat to electricity process)
    so high water production, and, large hydrogen production (which is emissions-free), Now the hydrogen can be used as is for hydrogen based transport, however, going one step further and implementing Carbon Capture, and combining CO2 and Hydrogen can allow you to make synthetic fuels (pure, gasoline, kerosene, diesel). And this let me tell you is a holy grail moment.
    While still producing CO2, this synthetic fuel burns cleanly (no impurities based from refinement) and burns more potently, critically, it is cyclical in nature, you take CO2 out of the atmosphere (or out of the oceans) and then release it back into the atmosphere, it is net-zero. And the key difference is simple and highly attractive; we don't need to reinvent anything to make it work. This Fuel can be used in our current infrastructure as is... Airplanes, Shipping boats, Public Transport, personal transportation; all of this becomes carbon-neutral overnight, without the necessity or expenditure to change the entire fleet of transportation methods (which in itself constitutes a burden in the form of emissions and pollution, as we are retiring the older fleet before its lifecycle ends)
    Another fundamental win from this is opening up a market to which we can base our Carbon Capture too... Currently, we can capture tons and tons of CO2 from the atmosphere... but there is no market large enough to sell it too... meaning the Carbon Capture will never be a profit driven industry... however synthetic fuels however flip this... creates a market, allows Carbon Capture companies sell their CO2 to fund the construction of more carbon capture... once we have displaced all fossil fuels from the transport industry alone (fossil fuel power plants make no sense to convert to synthetic fuels) (at this point also technology and scale also has driven down the cost of Carbon Capture) governments can impose a carbon storage quota, 70% of what is captured is destined for synthetic fuel production, and the remaining 30% is for storage; thus now motivating the construction of more carbon capture and finally beginning the process of CO2 reduction in the atmosphere.
    Carbon Capture is energy intensive, and thus requires a large quantity of stably available electricity which is emissions-free, which again leads perfectly into the hands of Nuclear Energy...

    • @raunakshahi
      @raunakshahi Před 2 lety

      Hmm yes I agree...

    • @victorhopper6774
      @victorhopper6774 Před 2 lety +2

      co2 capture is not sustainable.

    • @stephanhazeu7317
      @stephanhazeu7317 Před 2 lety +1

      @@victorhopper6774 why isnt it sustainable? I mean the ICC and most other reputable scientists already stated that simple reduction and complete net zero carbon emissions isnt going to be enough anymore.
      In essence weve started a chain reaction already as is where Carbon capture is the only way to reverse and undo the chain reaction...
      Actually i have 2 questions;
      Why do you think it isnt sustainable?
      And, what do you understand with unsustainable?

    • @victorhopper6774
      @victorhopper6774 Před 2 lety

      @@stephanhazeu7317 beause life for humans requires oxygen at least 19% or we get goofier. we are at about 21 now.you have to keep freeing up the 02 for animals to survive so don't ''lock'' it up.

    • @stephanhazeu7317
      @stephanhazeu7317 Před 2 lety

      @@victorhopper6774 who says we would go beyond that? There are about 200 years worth of industrial CO2 in the sky, and the first stage is to make it net-zero... which is the cyclical nature of synthetic fuel. If we dont store any of it at all, then we break even because we release it again...
      Only when we decide to store it do we capture and lock it down, the reality is your right, but we do need to remove atleast the 200 years of CO2 from the industrial revolution from the atmosphere... and noone said we would push beyond that, we dont have too, we are balancing our intake of CO2 with our output.

  • @ravindertalwar553
    @ravindertalwar553 Před 2 lety +4

    Congratulations 👏 for such a wonderful presentation ❤️

  • @ping_me1vp
    @ping_me1vp Před rokem +1

    thank you for great work, i know this video took lots of your time to develop, thank you for your great work & all the great info in this video, god bless you.

  • @kpec3
    @kpec3 Před rokem

    Really excellent documentary! Outstanding!

  • @guptabhishek
    @guptabhishek Před 2 lety +6

    Great video as always! Would've loved a little more coverage of the Indian plants though

  • @bernardsulman1506
    @bernardsulman1506 Před 2 lety +162

    The biggest environmental concern is what to do with the salt-enriched waste water. Great video otherwise, but you didn't even touch upon this.

    • @AstroGremlinAmerican
      @AstroGremlinAmerican Před 2 lety +30

      Oh, dear how would extra salty water behave in salty water? We need to study saltiness while CO2 acidifies the oceans.

    • @hoangle2483
      @hoangle2483 Před 2 lety +72

      American fast food chains:" did you say unused extra salt ? I'll take the entire stocks"

    • @ronmaximilian6953
      @ronmaximilian6953 Před 2 lety +37

      Mine for lithium and other useful minerals?

    • @PainterVierax
      @PainterVierax Před 2 lety +32

      @@ronmaximilian6953 directly producing Na-ion cells for industrial storage of electricity.

    • @rolletroll2338
      @rolletroll2338 Před 2 lety +50

      @@AstroGremlinAmerican don’t joke, this is a real environnemental concern arround the dessalanisation plants. But yes of course n1 priority is still global warming.

  • @challacustica9049
    @challacustica9049 Před 2 lety

    Never knew so many were in operation, great video.

  • @javiercarrasco9410
    @javiercarrasco9410 Před rokem

    Your Chanel is awesome. Congratulations from Spain.

  • @PlanetFrosty
    @PlanetFrosty Před 2 lety +7

    Very good job, Molten Salt Reactors are a promising producer of heat with general less tritium production.

  • @britzman9905
    @britzman9905 Před 2 lety +4

    I love the style of your vids. So unbiased and to the point. Very informative and insightful. Thank you!

    • @richardscathouse
      @richardscathouse Před 2 lety

      Highly biased in this case, almost like it was paid for by the nuclear industry

    • @britzman9905
      @britzman9905 Před 2 lety +2

      @@richardscathouse you mean the only realistic solution to meet climate goals industry?

  • @pramodkhadka1905
    @pramodkhadka1905 Před 2 lety

    Great Video! Love it!

  • @scottfranco1962
    @scottfranco1962 Před 2 lety

    Congratulations on crossing 200k!

  • @DanBurgaud
    @DanBurgaud Před 2 lety +35

    Nuclear desalination makes great sense.
    Nuclear generates lotsa heat and can be used to boil water... cools down the vapor and get clean water, rinse repeat.

    • @Monsterpala
      @Monsterpala Před 2 lety +1

      Nuclear power does make great sense as well, the problem is the handling and damage potential. With two prime examples and a lot less or unknow near catastrophic events I am happy not to have to rely on this option.

    • @UmbraWeiss
      @UmbraWeiss Před 2 lety +6

      @@Monsterpala You will see a bigger catastrophe when war happens because of Energy... New reactors are made in a way where things like those two cases are impossible to happen....

    • @jorgelozoya6739
      @jorgelozoya6739 Před 2 lety

      @@Monsterpala 2 ejemplos buenos mis huevos, uno era un reactor militar pesimo (Chernobil) y el accidente de fukushima fue un evento sin precedentes, no este mamando.
      Buenas tardes.

    • @RCXDerp
      @RCXDerp Před 2 lety

      @@Monsterpala Natural gas plant accidents and pollution kill more every year than nuclear ever did

    • @rickcostin
      @rickcostin Před 2 lety

      @@UmbraWeiss You mean when war happens and they drop a bomb on your failsafe nuclear power plant?

  • @BlameCo
    @BlameCo Před rokem +4

    Good video, I hope more people can design reactors to slowly but eventually replace coal and petroleum so they are only really used for plastics or classic cars.

  • @SCIFIaction
    @SCIFIaction Před 2 lety +2

    Dude thanks for this

  • @zzzanon
    @zzzanon Před 2 lety

    An unexpected topic, but it is important and I enjoyed this. Thanks

  • @exportedafrican
    @exportedafrican Před 2 lety +11

    Video doesn’t mention what happens to the salt after desalination.. if dumping it back in the ocean it increases the concentration and wrecks the ecosystem. It is another issue that needs to be addressed when these projects hit scale.

    • @rickcostin
      @rickcostin Před 2 lety +3

      Good point, why not harvest the salt, we have a company here in SA that farms table salt from salt pans and exports brine. I have thought that if you were to cover the salt pans with glass houses you could have solar desalination by collecting the condensation and salt harvesting in one industry.

    • @johnellis5828
      @johnellis5828 Před rokem

      Just don't dump it in the ocean then. Duh.

    • @tommylakindasorta3068
      @tommylakindasorta3068 Před rokem

      @@johnellis5828 Dumping it in the ground wouldn't be any safer. It would pollute the surrounding land and water supply.

    • @abrahamevangelista4215
      @abrahamevangelista4215 Před rokem

      Worth considering, most domestic and industrial would end up back in the water waste stream. In most cases you would be looking at a net neutral salinity.

    • @gtrguyinaz
      @gtrguyinaz Před rokem +1

      Put it out 20 miles into the ocean, now we dump it 1 mile out?

  • @wyattplaz6345
    @wyattplaz6345 Před 2 lety +5

    You covered much of the same information that was in my senior project, the main difference was that I focused on the use of SMRs to reduce overnight cost and more specific to the task of water scarcity to meet climate change issues. I enjoyed your video, happy to see good information for a positive use for nuclear energy.

    • @chapter4travels
      @chapter4travels Před 2 lety

      Your time would be better spent focused on MSRs instead of tiny LWRs.

  • @harishs8567
    @harishs8567 Před rokem

    We need more of this

  • @floridaray3380
    @floridaray3380 Před 2 lety

    Very interesting info!

  • @0MoTheG
    @0MoTheG Před rokem +3

    The desalination comes at a low price if it is thermally coproduced with electricity. The efficiency of the powerplant is only slightly reduced but you get the water for it.

  • @atholmullen
    @atholmullen Před 2 lety +7

    No mention of graphene or graphene oxide desalination? This relatively new technology basically stacks layers of graphene or graphene oxide close enough together for water molecules to pass through but block virtually everything else, without the high pressure required for reverse osmosis.

    • @Laotzu.Goldbug
      @Laotzu.Goldbug Před rokem +1

      He did make a passing reference to "other membranes technologies". From an energy magnitude perspective this in probably equivalent to RO in terms of power infrastructure?

    • @Laotzu.Goldbug
      @Laotzu.Goldbug Před rokem

      He did make a passing reference to "other membranes technologies". From an energy magnitude perspective this in probably equivalent to RO in terms of power infrastructure?

  • @ChrisHalden007
    @ChrisHalden007 Před 2 lety

    Great video. Thanks

  • @hepcat93
    @hepcat93 Před rokem +1

    Man, u're channel is awesome! Keep it going! The topics, the delivery. Not a typical "playing around" popular science channel :DI think I would l like to hear on Russia's perspective in the semiconductor industry since sanctions. Will it be able to do something with its Elbrus or not. And the breeder-reactors on fast neutrons. Just telling some (maybe) interesting ideas on future videos. Thanks!

  • @avus-kw2f213
    @avus-kw2f213 Před 2 lety +7

    Yet another of my ideas has already been thought of but I was planning to send it into the middle of the desert to just be dumped there (that’s the only purpose (and free salt))

  • @aurora7207
    @aurora7207 Před 2 lety +8

    I remember Jacque Fresco exhibiting a solar desalination plant that used a clear canopy over a canal to collect moisture from the evaporation off of water as it is heated by the sun, perfect for most equatorial zones. No energy plants required.

  • @liudas5377
    @liudas5377 Před 2 lety

    That was excellent. Thanks

  • @danerose575
    @danerose575 Před 2 lety

    Really exciting possibilities... thanks.

  • @Embassy_of_Jupiter
    @Embassy_of_Jupiter Před 2 lety +5

    There's a pretty efficient and cheap solar desalination method called TMSS. I think it's a type of MED.

    • @AstroGremlinAmerican
      @AstroGremlinAmerican Před 2 lety +2

      Whatever. Solar is only as hot as the Sun gets on a square meter. We could burns leaves to boil water, too.

  • @lestergillis8171
    @lestergillis8171 Před rokem +12

    "Agricultural use" means that at least some Co2 is removed & replaced with O2. Not a bad trade off.

    • @julkkis666
      @julkkis666 Před rokem +2

      Lol that would make nuclear energy a net negative for greenhouses :Ddd epic

  • @thebobloblawshow8832
    @thebobloblawshow8832 Před rokem

    Excellent idea. 👍👍

  • @alexandroutsos5990
    @alexandroutsos5990 Před 2 lety +1

    Great video

  • @etherjoe505
    @etherjoe505 Před 2 lety +8

    12:00 "up to 10-30% of fish embryos are being affected" .... at what scale ? Around the reactor ? You can't mean worldwide.

    • @johnl.7754
      @johnl.7754 Před 2 lety +3

      around the desalination plant.

  • @charleslynch340
    @charleslynch340 Před 2 lety +5

    Great Stuff! I was wondering if a ship based nuclear reactor could be used to provide energy for a mobile de-sal plant, for example on humanitarian missions via an form of deep-hulled vessel such as an amphibious assault ship? Would such a facility be effective, or even feasible?

  • @highadmiral613
    @highadmiral613 Před rokem

    The effort you make to proper pronunciation is noticed, and extremely rare. I appreciate your dedication to proper aducation.

  • @Gareth820617
    @Gareth820617 Před rokem

    Please help me here with my understanding. (which is still limited). Desalination plants seem to be all the rage right now, and indeed, drinking water security is critical. But I am concerned with what happens to the salts that are removed from the saline sea water, is this slurry (Brine Discharge) pumped back into the oceans whence it came? have there been many (any) impact studies on what this effect has on the immediate ocean life near the location, or does it diffuse out quickly, as the ocean is vast. But I have to wonder about if this is scaled up around the globe, and the long-term effects of no only increased global temperatures, but potentially the increased salt percentage of the oceans.

  • @jholotanbest2688
    @jholotanbest2688 Před 2 lety +3

    I think Finland follows now the EU directive mandating 100 Bq/l Tritium limit. It only make sense considering Finland is in EU the number of 30 000 is outdated.

  • @bef694
    @bef694 Před 2 lety +21

    Wish Australia would stop being scared and build some bloody reactors. great video dont how you explain this shit so well.

    • @rickcostin
      @rickcostin Před 2 lety +1

      Yep we are thinking of putting one in your back yard.....

    • @richardcowley4087
      @richardcowley4087 Před 2 lety

      @@rickcostin clearly, you know fuck all about the subject

  • @restoreleader
    @restoreleader Před 2 lety +1

    I probably missed this, but can these powerplants also generate power? Is the desalination only a byproduct of cooling down steam or these dont even contain turbines and generators?

  • @matthewbeasley7765
    @matthewbeasley7765 Před 2 lety +1

    Combing flash distillation with nuclear would be a good combo. In flash distillation, the brine is heated, not boiled. The brine would be at a higher pressure than the steam heating it, so any leaks will be from the seawater to the secondary loop, excluding tritium transfer from the secondary loop to the brine. Not so great for the plant now getting brine in the secondary loop, but great for keeping the product water radiation free.

  • @YasinNabi
    @YasinNabi Před 2 lety +3

    this is for sure a great video, and I enjoyed watching ! subbed and liked ! a fellow creator

  • @thomasesr
    @thomasesr Před 2 lety +6

    What about using nuclear power to generate electricity to run a heat pump based desalination plant? Should be very efficient. The condenser side boils the water and the evaporator side of the heat pump condenses it back up. Probably very expensive though.

  • @Stuckinbed1
    @Stuckinbed1 Před 2 lety +1

    Was just thinking about it! And then the video dropped.

  • @alecynot.2016
    @alecynot.2016 Před rokem

    Good info.

  • @georgegonzalez2476
    @georgegonzalez2476 Před 2 lety +6

    The big problem with desalination is the host of imponderables-- like corrosion in the reactor coolant loops and corrosion in the brine loops. Everything looks fine from the outside until a pipe corrodes through or a valve gets stuck open or shut and then EVERYTHING has to be shut down for weeks, months, years, or forever. It's especially bad with sodium loops as the sodium remains radioactive for a very long time.

    • @alexandrosandreou8585
      @alexandrosandreou8585 Před 2 lety +1

      But the corrosive water won't be in the primary cooling loop of the reactor it will prob be in the secondary just like pressurised water reactors so how will the primary cooling loop of the reactor corrode ?

    • @alexandrosandreou8585
      @alexandrosandreou8585 Před 2 lety +1

      And in nuclear plants everything has back ups so if a valve gets stuck open or a pipe corrodes they can use backup valves and secondary other loops temporarily until the main ones are fixed that is just how Nuclear power plants in general work

    • @georgegonzalez2476
      @georgegonzalez2476 Před 2 lety +1

      ​@@alexandrosandreou8585 "Everything" has backups? Nope. I don't know of any reactor that has backup heat exchangers or main valves. Sometimes, there are dual pumps and dual generators but that's about it.

  • @pshuang415
    @pshuang415 Před 2 lety +7

    Perhaps useful to think of a nuclear reactor + desalination plant as equivalent to a "peaker" power generation unit that can be operated 24/7 "for free" (uranium fuel and nuclear waste disposal being relatively inexpensive operating costs) with the electrical power that isn't needed by the electrical grid being put to productive use.
    Compare for example to a nuclear reactor + hydro power storage facility, feed nuclear reactor electricity into the grid when needed and use that electricity to pump water uphill the rest of the time. Such a combination is even more useful, but only works where the nuclear reactor can be built near a good site.
    Or compare to the notion of building dams in remote locations with the intention of using the electricity generated to smelt aluminum. The aluminum smelting plant and the desalination plant are similar: they both represent productive ways of using electricity where the nuclear power operator can control demand.

  • @neurofiber2406
    @neurofiber2406 Před 2 lety +1

    This would be an interesting use for Small Modular reactors...

  • @ravindertalwar553
    @ravindertalwar553 Před 2 lety

    Congratulations 👏 and all the best for your success and happiness ❤️❤️

  • @sludgefactory241
    @sludgefactory241 Před 2 lety +30

    People are going to have to wake up about nuclear. It's far safer and pollution wise it's a no brainer. Yes when safety protocols and site placements are an afterthought, bad things happen. Those incidents while severe, are few and far between. Maybe someday we will find a better alternative but until then much like the fallout series, the future is the ⚛️!

    • @AstroGremlinAmerican
      @AstroGremlinAmerican Před 2 lety

      The scared mothers of America need to be told about the dead birds and what happens to children when the power goes out. Sick of dumb people.

    • @TheHiddenPearl
      @TheHiddenPearl Před 2 lety +2

      @Zaydan Naufal people are almost ALWAYS confused because of ignoring and belittling knowledge! Ex. Trump

    • @BearMeOut
      @BearMeOut Před 2 lety

      More people died from coal pollution than nuclear pollution
      Everybody knows about it
      But it's kill more slowly so the news reporter aren't interested

    • @sludgefactory241
      @sludgefactory241 Před 2 lety

      @@TheHiddenPearl well to my recollection jobs were coming back to this country and gas wasn't 6 USD a gallon so ease enlighten me as to what facts were ignored and belittled? Thinking small minded people just spout and regurgitate info that is intellectually dishonest, but hey, what do I know, I'm just the chemically induced evil alter ego of a victorian scientist.

    • @sludgefactory241
      @sludgefactory241 Před 2 lety

      @B well put

  • @elinope4745
    @elinope4745 Před 2 lety +20

    What to do with brack water that is left over? It can damage ocean habitats.

    • @Anenome5
      @Anenome5 Před 2 lety +10

      It's rich in metals we need. Sodium is a promising new metal for battery tech that could replace lithium and is ubiquitous. Magnesium is a great building material similar to titanium. And other trace materials and chemicals can be harvested and sold to industry, such as chlorine.

    • @rexmann1984
      @rexmann1984 Před 2 lety +5

      It can also be added at the right times of day and locations to improve the habitat.

    • @lengould9262
      @lengould9262 Před 2 lety +19

      @@Anenome5 Very expensive to take high saline desalination brine down to extraction of solutes. Then the salt needs to run an industrial process to separate the eg magnesium, Lithium and Sodium from the chlorine and each other. Very expensive, energy intensive. Dry salt deposits all over western N. And S. America's, very little mineral separation happening due to cost.

    • @theobserver9131
      @theobserver9131 Před 2 lety +2

      @@lengould9262 is energy the greatest expense? If so, using the same nuclear power plant for these processes could keep costs low?

    • @theobserver9131
      @theobserver9131 Před 2 lety +1

      Couldn't we just continue evaporating it and use the dried salt?

  • @thepeff
    @thepeff Před 2 lety +1

    Could this be paired with a reactor using dry steam?

  • @davidlangford1165
    @davidlangford1165 Před rokem

    Excellent informative video the “greens” should pay attention.

  • @richleyden6839
    @richleyden6839 Před 2 lety +12

    Good job analyzing the water problem from a stand point of current engineering. I think you made the case that thermal desalination powered by nuclear energy is doable right now, no break throughs required. However, I have my doubts that this will be significantly advanced in the near to medium term. There is too much fear of nuclear power. "Nuclear water" is not a tagline that sells.
    This is a shame because sea water desalination can be cost competitive with many current dam and irrigation projects. For perspective, the minimum theoretical energy required is less than 1 Kw/hr per M^3. Stated differently, reverse osmosis of sea water requires a pressure head of ~ 300 M. For comparison the California water project pumps water up 400 M over the Tehachapi mountains. Yes, pre-treatment is currently expensive. Yes, practical osmotic systems may require multiples of theoretical pressure. But, desalination is not that much more expensive than other alternatives.

    • @AstroGremlinAmerican
      @AstroGremlinAmerican Před 2 lety +5

      Fear has to give way to fear of not having power and water. The moms of America need to get over their fears.

    • @liesdamnlies3372
      @liesdamnlies3372 Před 2 lety +7

      It’s even better than dams. You’re yoinking a little water (relatively speaking) from the ocean, vs destroying hundreds to thousands of hectares of land…
      I dunno why environmentalists would ever be for such projects over nuclear-powered desalination but…welp.

    • @jmtrad1906
      @jmtrad1906 Před 2 lety

      Sadly the mob mentality is that nuclear = bad. Is harder to remove this fear from people than solve water crisis.

    • @makisekurisu4674
      @makisekurisu4674 Před 2 lety +1

      Wait until the small modular plants come into operation, everyone's working on it right now!

  • @davidlasoff8261
    @davidlasoff8261 Před rokem +6

    It's a winning combination. I used to be a nuke on a US Navy submarine. The reactor is just a heat source that doesn't require hydrocarbons like oil, gas or coal. Under pressure, the very hot water from the nuclear plant is pumped inside the tubes of a steam generator that makes the steam and sends it out of the reactor compartment in secondary piping (WITHOUT radioactivity) to drive turbines to make electricity. It's a simple thing to branch off some auxiliary steam to make fresh water from sea water as we did underway. We could produce about 10 thousand gallons of fresh water daily in the 1970s which was more than enough for the power plant and potable water for a crew of 140 men. Nuclear plants should be built in seismically quiet coastal areas with associated desalinization plants to make surrounding communities and regions plenty of fresh water. By the way, when you see those big cooling towers emitting huge plumes of environmentally safe steam, remember that all this heat energy is just being wasted to the atmosphere when instead, just a small portion of this non-utilized energy resource could be used in auxiliary capacities like desalinization that could benefit the utilities as a secondary but significant source of revenue in terms of the overall nuclear power plant's business model.

    • @hotmailcompany52
      @hotmailcompany52 Před rokem

      What happened to the waste brine? I know for large industrial desalination there's enough to throw off local salinity levels if it's dumped back into the ocean

    • @davidlasoff8261
      @davidlasoff8261 Před rokem

      @@hotmailcompany52 at sea, obviously this isn't a problem for a submarine BUT you bring up a good point for a stationary desalination plant onshore. I'm not an expert but it does seem reasonable to engineer an undersea pipe for about 2/3 km as long as depth is acceptable before reaching a discharge point where the salinity of the excess brine would diffuse naturally. Of course, experts and ecologists can get together to come up with a good X km if 2/3 km isn't far enough or unnecessarily far but I'm just giving it a guess here. Besides, this important issue that you raise is certainly being addressed by the environmental impact report which would be done before plant construction in most jurisdictions. After all, there are more than 19 thousand desalination plants in operation all over the world now.

  • @kansascityshuffle8526

    So does desalination and the costs stated in the video also mean treated? Or is that a further step/cost?

  • @nukenuked5749
    @nukenuked5749 Před rokem +2

    nice video mate
    just got a big question to ask you
    has anyone tryed to use desall water useing geothermal power greration?

    • @michaelharris679
      @michaelharris679 Před 11 měsíci

      There's a Wikipedia page under the title "geothermal desalination"

  • @Planet_Xplorer
    @Planet_Xplorer Před 2 lety +6

    For countries with excessive renewable power wouldn't it be cool to use the extra power for desalination instead of using battery storage? This creates water while reducing costs since you don't need batteries!

    • @rickcostin
      @rickcostin Před 2 lety

      we do, in South Australia

    • @Planet_Xplorer
      @Planet_Xplorer Před 2 lety

      @@rickcostin I'm Aussie too but didn't know that. Aussie Aussie Aussie 😊

    • @rickcostin
      @rickcostin Před 2 lety +1

      @@Planet_Xplorer I've seen more comments on batteries being used for excess power production, which is only a problem for coal/gas and apparently nuclear plants that take ages to react to changes in demand and need to keep running even when there is no demand. My understanding is that batteries are used to stabilize the grid if there is an outage like the one we had in SA when a tornado took out a main transmission line. The state government was ousted because of a perceived over reliance on renewable energy, when it came down to the Victorians not closing their interconnector. Elon Musk stepped up to the plate with the worlds biggest battery in Jamestown SA which helps stabilize the grid when you have a lot of wind and solar power which is intermittent.

  • @SanguineBlackBlood
    @SanguineBlackBlood Před 2 lety +5

    I really hope they start using nuclear power to desalinate water. People need fresh water at a low cost.

    • @blastermanr6359
      @blastermanr6359 Před rokem

      That the major problem though. The technology is there. But not the economics.

    • @SanguineBlackBlood
      @SanguineBlackBlood Před rokem

      @@blastermanr6359 do you know what the words you are saying mean?

  • @burntsider8457
    @burntsider8457 Před 2 lety

    What value is reclaimable from the solids removed from seawater through desalination?

  • @bonob0123
    @bonob0123 Před rokem

    no discussion of the concentrated brine waste outflow of desal plants? how does this get dealt with safely?

  • @jg5737
    @jg5737 Před 2 lety +4

    There was a plan in the early 1970's to build artificial islands off the coast of California, place nuclear power plants on them, and incorporate a large water desalination process. The selling points were pollution-free electricity and copious amounts of fresh water sent through undersea pipes to southern California. The islands would have had earthquake safety measures incorporated. The plan was not used for various reasons, but if it had worked as planned, it could have solved quite a few problems California suffers from now.

  • @Jarms48
    @Jarms48 Před 2 lety +9

    Desalinated water is a solution to a lot of the worlds problems. It's a shame it hasn't become more widespread. People say it's too expensive, but the more we invest the cheaper it gets. I've seen proposals of solar powered Desal plants. Could even be used to change water tables and water cycles of otherwise dry regions. Just build water pipelines and pump excess fresh water.

    • @rap3208
      @rap3208 Před 2 lety

      Desalinated water is still very salty, unless perhaps you're to do the process several times until it's good enough to drink...but then it would make the water very expensive to produce. I worked in Saudi Arabia ang nobody drinks from the tap as the water is salty, we just used the water for bathing, cooking, washing clothes and other household needs.

    • @Jarms48
      @Jarms48 Před 2 lety

      @@rap3208 we have it here in Australia. In several major cities. Can't taste the difference.

    • @rap3208
      @rap3208 Před 2 lety

      @@Jarms48 I doubt you desalination plant produces as much volume as the Saudi plants do. As I have said the more you try to remove the saltiness, the more expensive is the process.

    • @Jarms48
      @Jarms48 Před 2 lety +1

      @@rap3208 Australia has 46 desalination plants across the country, we have more plants than Saudi but less production. Australia’s desalination process is more expensive than Saudi’s, which I presume is because it’s far more heavily treated. As I said, I never even tasted a difference here.

    • @motimobo
      @motimobo Před 2 lety

      Desalinated water should have no salt at all by definition. If it's distilled then it will be completely pure.

  • @Binary84
    @Binary84 Před 2 lety +1

    If not mistaken, based on what I read. The by-product produced by desalination is a concentrated salt water. Since we harvested the "fresh" water component, the by product which is the super salty water gets discharged into the sea. Eventually, the sea will become a "dead sea" and there goes our seafood.

    • @killman369547
      @killman369547 Před 2 lety +1

      No it won't for one simple reason. The water cycle. All the water we take from the ocean through desalination will eventually make it's way back to the ocean.

    • @motimobo
      @motimobo Před 2 lety +1

      Are you a comedian or something? The salt in the ocean is constantly diluted by rain.

  • @joechang8696
    @joechang8696 Před 2 lety

    in any steam power plant, nuclear or coal, the condenser needs cooling water, and will heat the cooling water by 10-20F? I don't recall a ship-based plant tapping the hot-side of the condenser cooling water as source for desalination.
    There is a caveat, for plant water, desalination can occur at the lowest possible temperature and pressure (120-140F?). For drinking water, the desalination should occur at higher temp (180F?) and should tap seawater from further out.

  • @Spacedog79
    @Spacedog79 Před 2 lety +9

    It's easy to get caught up with scary sounding things like tritium, but it's important to remember the reason there is such wildly different environmental standards for it is that these are basically guesswork. We have no evidence for harm from it at low doses so they just pick a number that sounds good. We only have evidence of harm from extremely high doses and no one has ever had enough to kill them.

    • @EDesigns_FL
      @EDesigns_FL Před 2 lety +4

      Risk factors are based upon statistical analysis, not guesses. Each tritium atom has the to potential to emit beta particles which are capable of damaging DNA if they collide. Cells with damaged DNA can turn cancerous. Statistical analysis is used to determine the probability of this event, and this is compared to an acceptable risk factor to determine the concentration of tritium, or any other potential toxin, will be allowed.

    • @Spacedog79
      @Spacedog79 Před 2 lety

      @@EDesigns_FL Sure but this is theoretical, if you take in to account DNA repair mechanisms and the lack of real evidence that these low doses actually cause cancer then the number they choose is still just a guess plucked from the air, extrapolated from high dose numbers without evidence.

    • @kokofan50
      @kokofan50 Před 2 lety +1

      @@EDesigns_FL statistics based on models with little evidence are guess work

    • @eckligt
      @eckligt Před 2 lety +4

      @@EDesigns_FL I've heard several talks by Prof Geraldine Thomas who heads something called the Chernobyl Tissue Bank, and researches the toxicology of nuclear materials. She's quite adament that it's practically harmless in the concentrations that we could be talking about. The jist of her explanation is that:
      - The biological half-life of Tritium is around ten days (with some variation), while the nuclear half-life of Tritium is 14 years, so the chance that a given Tritium atom decays while inside your body is very low.
      - Not all beta emissions are created equal. Tritium's beta particles have particularly low energy. So even if it does decay inside your body, its damage is limited.
      Here's one of her appearances on the Decouple podcast: czcams.com/video/-KRthSSs370/video.html

    • @EDesigns_FL
      @EDesigns_FL Před 2 lety +3

      @@kokofan50 It might seem like that to someone who is not acquainted with how the analysis is conducted, but it's not. Physical testing is often done to verify models, but the advent of computer simulations has rendered this unnecessary for most work. That's how we were able to abolish testing of nuclear weapons. Likewise, computational flow dynamics and finite element analysis software and has rendered wind tunnel and physical testing unnecessary. It's all math.

  • @debochch
    @debochch Před 2 lety +3

    Here in New Zealand we do the opposite to desalination. At the Manapouri hydro power station, we take 510m3 of fresh water per second and dump it into the sea to produce 800MW of electricity. That's 44 million cubic meters of fresh water per day. Makes that Soudi desalination plant look tiny in comparison.

    • @DruNature
      @DruNature Před 2 lety

      wtf this is lunacy!!

    • @debochch
      @debochch Před 2 lety +1

      It gets crazier. There is a tunnel (9. 2 meters in diameter, 10km long) that is used to discharge the fresh water into the sea. Once operational, they realised it was too small to be used to operate the power station at full capacity. So they tunneled another one at 10 meters diameter. Just try and imagine how much fresh water flows through those two tunnels.

    • @TheBooban
      @TheBooban Před 2 lety

      @@debochch its just a dam. Without it, its just a river doing the same thing.

    • @debochch
      @debochch Před 2 lety +1

      @@TheBooban no. In normal dams, the water continues along the river, as you pointed out. At Manipouri, the water is diverted away from the river, through the mountain, and directly into the sea.

    • @ThomasBomb45
      @ThomasBomb45 Před 2 lety

      @@debochch either way, it is going into the ocean right?

  • @kennethw6962
    @kennethw6962 Před rokem +1

    Regarding the risk of nuclear contamination of the drinking water, would it be possible to just use the electricity generated from a nuclear power plant to power the desalinization plant eliminating all risk of nuclear contamination, as the nuclear components would never come into contact even remotely with the water?

  • @IDraganM
    @IDraganM Před 2 lety

    Thank you, nice video! Please consider listing sources of information ( most do it below video ) so viewers can verify that this is information not entertainment..

  • @fratercontenduntocculta8161

    Crazy to me how nuclear is coming back to the energy debate, seeing how much safer things have become and watching the whole fossil fuel thing play out. I do hope for our future that serious thought is given to going nuclear in a bigger way.

  • @bedhedd
    @bedhedd Před 2 lety +10

    Molten salt/thorium reactors are far safer from meltdowns compared to uranium reactors

    • @AstroGremlinAmerican
      @AstroGremlinAmerican Před 2 lety +1

      Let's consider all the things that could go wrong while things are already going wrong but you find no fault with them.

    • @thijsgadella
      @thijsgadella Před 2 lety

      Normal reactors are safe already. Just take a look at the deaths per kwh, only solar and wind are better than nuclear

    • @kokofan50
      @kokofan50 Před 2 lety +2

      Most MSRs are designed to use uranium, and thorium can and is being used in pressurized water reactors

    • @eckligt
      @eckligt Před 2 lety

      Not really safer, but they achieve it in a different way that is easy for the lay public to grasp -- "already molten, so can't melt down".

  • @alex_zetsu
    @alex_zetsu Před rokem

    Why do you need multiple stages for a multistage flash? Once water is boiled and condensed, it is pure right? It seems to me one stage would be sufficient.

  • @Daniel_Parke
    @Daniel_Parke Před rokem

    One issue often overlooked that this system helps mitigate is the amount of electricity required to then pump water through a distribution network, as this is often far more energy required than collecting the water. Where I live (Northern Ireland) our water supplier is the single biggest consumer of electricity on the network for example, and this is something that scales linearly with water requirements.
    So as water demands scale up and nuclear generation needs to increase to keep par, then electricity generation would also scale up at the same time resolving this issue, which would be a massive net increase in overall system efficiency.

  • @Berkana
    @Berkana Před 2 lety +3

    You keep mentioning "Kazakastan" in this video. Do you mean Kazakhstan?

  • @Riskninjaz
    @Riskninjaz Před 2 lety +16

    I thought this was a good idea 25 years ago. Seems a sensible use of excess power needs while simultaneously cooling reactors. In theory it would combat rising sea levels which just simply adding people (95% water) would not be enough to limit effects of melting ice. It all helps.

    • @autohmae
      @autohmae Před 2 lety +3

      "In theory it would combat rising sea levels"
      My gut feeling is and guess (I've not checked the numbers) is the scale of the predicted sealevel rise far exceeds the amount of water we use/need. And it would just be a drop in the bucket.

    • @Riskninjaz
      @Riskninjaz Před 2 lety

      @@autohmae yes agree. But as people reproduce they contain water. Well it’s a step in the right direction for balancing human impacts on the earth.

    • @maltehoffmann3621
      @maltehoffmann3621 Před 2 lety +2

      @@Riskninjaz The sea level would sink about 0.0027778 mm with 10 billion extra people each containing 100 liters of water. With an average sea level rise of 2.3mm in a year that's about 10.5 hours worth of sea level rise that is prevented.

    • @showmemo3686
      @showmemo3686 Před 2 lety

      Have to start somewhere. A lot of water will be required for irrigation of crops needed to feed us all and for animal husbandry.
      Yet I can see the anti nuclear crowd having a problem with this.

    • @nomdeguerre7265
      @nomdeguerre7265 Před 2 lety

      If sea levels start to demonstrably rise then this withdrawal won’t be sufficient to counter it. But fortunately that doesn’t yet appear to be observably happening.

  • @manuelcruz836
    @manuelcruz836 Před 2 lety +1

    The Korean SMART is a copy of the Argentine CAREM... which was designed for water desalination too. So no surprise there

  • @geneballay9590
    @geneballay9590 Před 2 lety +1

    very interesting. I spent ten years in Saudi Arabia and used to frequent the beach near their desalt plant on the East Coast. We had two waters piped into our house, one was salty and the second 'sweet'. The sweet water was only available in the kitchen sink. that was all 20 years ago so not sure what they have now. Thank you for sharing your research.

    • @judgeomega
      @judgeomega Před 2 lety

      just how salty was the water?

    • @geneballay9590
      @geneballay9590 Před 2 lety +1

      @@judgeomega I do not know the ppm of the salty water and also did not know the source, but it was very noticeably salty to the taste and would not be suitable for cooking with, for many people. there was a type of grass that could survive it, and so we did have grass in the yards. also, the Arabian Gulf water is noticeably salter, especially the restricted bays and inlets, than open ocean water. Scuba diving in Arabian Gulf required more weights than diving in (for example) Philippines, because of that extra salinity. The situation is similar (but not as extreme) to what we read about the Dead Sea and how easy it is to float there.

  • @morajits
    @morajits Před rokem +5

    Could you imagine if we had put in all that alternative energy money in nuclear? We’d be carbon neutral by now with no rolling blackouts and perhaps not be in such worry of these droughts.

  • @stevenmitchell6347
    @stevenmitchell6347 Před 2 lety +3

    The use of reactors for desalination is only hampered by current reactors that produce very nasty waste and weapons materials. Using thorium reactors would eliminate the waste and weapons materials issue as well as be capable of desalination as part of their cooling system. The concentrated brine can be pumped into evaporation ponds and the resulting salt used for other industrial purposes or diluted with raw seawater and returned to the ocean/sea it was taken from. By building multiple plants in areas where earthquakes and tsunamis are less likely and/or building facilities able to withstand them, water and power can be provided safely and in great quantities. The cost of running thorium reactors would be much less than uranium plants due to their inherent safety and lower radiation fuels and waste.

    • @cosmoray9750
      @cosmoray9750 Před 2 lety

      American is out of control - mercenaries to assassinate
      czcams.com/video/xQR5WyTKB3s/video.html

    • @RipleySawzen
      @RipleySawzen Před 2 lety

      He didn't mention nuclear waste because only fools think it's any sort of problem.

    • @nomdeguerre7265
      @nomdeguerre7265 Před 2 lety +2

      Actually current designs produce a very small volume of dangerous waste. It’s said that over 90% of all nuclear waste has already been produced and most of that was from government nuclear weapons programs, not civilian power generation.

  • @awareness4
    @awareness4 Před 2 lety

    That's all great but what happens when we affect the salinity levels of the ocean from taking to much water/salt from it?

    • @alouisschafer7212
      @alouisschafer7212 Před rokem +1

      The oceans contain simply too much water for it to be noticeable.

  • @28ebdh3udnav
    @28ebdh3udnav Před rokem

    I recall telling my teachers and other adults 20 years ago that desalination plants would be the future as we will be able to take water from the ocean to Utah, Nevada, and also other areas for agriculture and human usage purposes. I see a future where we can transport water like we do with Oil. I don't see desalination plants to refill lake Mead or fill the rivers but to let those resources fill up on their own.

  • @rhy8336
    @rhy8336 Před 2 lety +3

    It’s Ka-zak-stan not kazakastan

    • @danielch6662
      @danielch6662 Před 2 lety +1

      I thought he said kazakistan. Still wrong and a bit jarring though. Like how Chinese speakers love to "localize" the pronunciation of foreign names, making it completely unrecognizable.

  • @perberger809
    @perberger809 Před 2 lety +3

    Kazakhstan is not pronounced "Kazak-i-stan" (4:16)

    • @eckligt
      @eckligt Před 2 lety

      I suspect it's an in-joke, but ... you're right of course.

    • @franklin2120
      @franklin2120 Před 2 lety +2

      I scrolled down forever to find this comment

  • @joshuaerkman1444
    @joshuaerkman1444 Před 2 lety

    This was a primary research project for me in college!

  • @rnunezc.4575
    @rnunezc.4575 Před rokem

    What happens with the waste salt or high salty water that all those systems produce ?...back to ocean ?