How does a calculator find sinx?

Sdílet
Vložit
  • čas přidán 30. 05. 2024
  • Online Python IDE: www.online-python.com/
    My code: www.online-python.com/diwYZl2Luj
    Credit to @HowToBasic for the clips I used in the video. I figured he wouldn't mind me stealing just a few seconds... hopefully.
    Knowledge of the following topics are essential to understand this video:
    Basic trigonometry (obviously)
    Radians & Degrees
    Matrices
    Chapters:
    0:00 Explaination
    5:26 Programming

Komentáře • 219

  • @David_Box
    @David_Box Před 19 dny +577

    the most egregious programming tutorial ever

    • @The_Prince770
      @The_Prince770 Před 19 dny +26

      horrendous, perchance

    • @Bolaside
      @Bolaside Před 19 dny

      @@The_Prince770 you can't just say perchance

    • @hallrules
      @hallrules Před 19 dny

      @@The_Prince770 you cant just say perchance

    • @ianweckhorst3200
      @ianweckhorst3200 Před 19 dny +12

      It has befouled us

    • @harley_2305
      @harley_2305 Před 19 dny

      @@The_Prince770you can’t just say perchance

  • @LethalChicken77
    @LethalChicken77 Před 17 dny +237

    My favorite part is how it still uses a trig function

    • @janpaul74
      @janpaul74 Před 16 dny +19

      indeed, how do we get rid of the atan for f**k sake? ;-)

    • @Tof0986
      @Tof0986 Před 16 dny +29

      @@janpaul74 Thought the same first, then concluded that these are arctan of always the same values, then it can be hardcoded, I guess.

    • @Tovarris
      @Tovarris Před 15 dny

      @@janpaul74 You can use taylor series to approximate trig functions as a polynomial. For example cosx = 1 - (x^2)/2! + (x^4)/4! - (x^6)/6! + ... Look up taylor series for more info. I believe they are used to approximate trig functions and also other tricky functions like e^x as well. It is also how exact values of these functions were found before calculators.

    • @dariosucevac7623
      @dariosucevac7623 Před 12 dny +3

      @@janpaul74 i think they use Taylor series for a close aproximation

    • @firstduckofwellington6889
      @firstduckofwellington6889 Před 6 dny

      @@dariosucevac7623 Nah, the Taylor series is too inefficient.
      Check out the CORDIC algorithm
      en.wikipedia.org/wiki/CORDIC

  • @aria.z124
    @aria.z124 Před 19 dny +181

    you are the howtobasic of mathematics. lol

  • @communismwizard8198
    @communismwizard8198 Před 19 dny +293

    Funnily enough, I wasn’t too hurt when you used curly braces instead of a colon. It’s a common mistake, sometimes it gets hard switching between languages very often.
    I was hurt when you called that symbol a “hashtag”

    • @Momie_et_Masque
      @Momie_et_Masque Před 19 dny +76

      I didn't even notice he used curly braces but I was hurt when he used special characters in variable names instead of spelling them (phi, theta) or even using representative names.

    • @ianweckhorst3200
      @ianweckhorst3200 Před 19 dny +4

      Also, he could’ve easily saved the import and just used 1/(2**n), for someone teaching us about math, he sure doesn’t know basic math facts

    • @ianweckhorst3200
      @ianweckhorst3200 Před 19 dny +2

      Although he probably did need atan from math, but the question here is uh, how would one calculate that by hand, it’s clearly needed for the formula, and while there is an integral formula, it’s still an integral, and integrals are pretty equal in their difficulty to calculate, plus, even once you’ve gotten past that difficulty, there’s even some square roots that even with a definite formula, the formula is quite difficult and time consuming when you’ve converted your numbers to binary, otherwise, it’s pretty close to impossible, and since the atan is part of an approximation, and you have to stack two approximations which grow harder exponentially the more you stack them, and you’ve got a recipe for a horrible or likely impossible time getting it, if there was some solution he gave to that, let me know

    • @LichtMarv
      @LichtMarv Před 19 dny +6

      he literally said it in the video, you can just use a lookup table for the values of n. since n is just a counter and therefore a natural number, you can just cover all the cases of n in one lookup table, no need to implement an atan function yourself.

    • @SpringySpring04
      @SpringySpring04 Před 18 dny +2

      Curly braces are just so much nicer to look at tho. (Yes I hate python)

  • @mrshmister173
    @mrshmister173 Před 18 dny +46

    Finally, a channel does a better explanation of the Cordic algorithm than just "rotating the vector" to approximate a trig function, When rotations require trig functions. Brilliant video.

  • @hafixion
    @hafixion Před 19 dny +65

    Hey there, awesome video, but I did just want to give a pointer. Using a variable called d next to x, y, or phi is generally considered an abuse of notation since it looks closer to an infinitesimal rather than actual variable.

  • @HenryStrattonFW
    @HenryStrattonFW Před 19 dny +51

    This is all well and good. But to any future programmers watching this, please do not use weird Unicode math characters in your code, just use the names of things, like phi, theta, delta, using these symbols will drive anyone that isn’t a heavy math user mad when trying to read your code.

    • @mad_6519
      @mad_6519 Před 4 dny +2

      tbh I'd kinda rather learn the meaning of 3 characters and not have big variable names like that. if you need readability, just shove a comment in explaining each symbol

  • @r75shell
    @r75shell Před 19 dny +34

    1) I think even if it's what algorithm is really used, there are some fine details about things regarding precision. Because if it shows 6 decimal places, then all of them should be correct. But error in cycle accumulates
    2) Your code won't work for angles > 4pi
    3) Question in the beginning was how do you calculate those without calculator. But then you pull out from somewhere: some constant which is limit of product (which is also you need to calculate without calculator), and table of 50 arctan, which you also need to calculate.
    I think more plausible way to calculate sin/cos without calculator to use angle halving formulas, and rotate by pi/2, pi/4, pi/8, pi/16 and so on.

    • @BryanLu0
      @BryanLu0 Před 18 dny +3

      The algorithm is called CORDIC, apparently each iteration gives 1 more decimal place of accuracy

    • @BryanLu0
      @BryanLu0 Před 18 dny +1

      You can read about it on Wikipedia, under modes of operation, it shows that the part inside the product can be written in the form 1/sqrt(1+2^-n) which is much more manageable to compute.

    • @BryanLu0
      @BryanLu0 Před 18 dny

      Of course because of the symmetry of sine, you only need to calculate a domain of (0, π/2)

    • @r75shell
      @r75shell Před 18 dny

      @@BryanLu0 it won't give you correct 6 decimal places if each term of summation will be calculated up to 6th decimal places.

    • @user-yb4dz7pl2h
      @user-yb4dz7pl2h Před 3 dny

      well you can always take the angle mod 4pi

  • @kamilrichert8446
    @kamilrichert8446 Před 19 dny +53

    If someone doesn't want to use pow function, the powers of 2 can be achieved by taking 1 and shifting it a few bits (remembering that 2^(-n) is the same as 1/2^(n))

    • @kakuserankua
      @kakuserankua Před 19 dny +11

      That works when multiplying by two because the result is an integer, but dividing one by two results in a floating point number which don't quite lend themselves to the same bitwise shift operation. You can, however, keep 2^n in an integer variable (starting as 1) and for every iteration shift to the left once (which multiplies it by 2), then divide 1 by the result.
      Also, Python does have an exponentiation operator (double asterisks) and a built-in pow() function not part of the math library. Both would eliminate the need to use the math library (we still need it for arctan however).

    • @IRedBerryI
      @IRedBerryI Před 19 dny +2

      @@kakuserankua was gonna say, why not use 2**n?

    • @declanmoore
      @declanmoore Před 18 dny

      @@kakuserankuaif you really want you can subtract n from the exponent to divide by 2^n for floats :)

    • @luigidabro
      @luigidabro Před 18 dny

      You try do that on a float.

    • @kamilrichert8446
      @kamilrichert8446 Před 18 dny

      @@luigidabro that's why I said "remembering that 2(-n) is the same as 1/2^(n)". You can get a float by dividing by an integer

  • @kingbeauregard
    @kingbeauregard Před 18 dny +8

    Didn't understand this, will have to watch again later. But when it comes to approximating sin and cos, I find that this is a good plan:
    1) Add or subtract multiples of 2*pi until you're in the range -pi to pi.
    2) Map the angle to the first quadrant and remember what that will do to the sign of the final result.
    3) If you're dong the sin or cos of an angle greater than pi/4, do the cos or sin of the complementary angle.
    With those three steps, we've guaranteed that our angle is no more than 0.785 radians. We can Taylor series it and get a good approximation within just a few terms. But we can take it even further:
    4) Pre-calculate some sines and cosines of angles like pi/4, pi/8, etc. Save them as constants to whatever arbitrary degree of precision you like.
    5) Remember your trig identities, like sin(a+b) = sina*cosb + coa*sinb, and cos(a+b) = cosa*cosb - sina*sinb. With those in mind, suppose you want to calculate sin(3*pi/16). Well, that's sin(pi/8 + pi/16), and if you've precalculated sin(pi/8), then you just have to calculate sin(pi/16) and cos(pi/16) and do the trig identities. And since pi/16 is a little under 0.2, the calculations for sin(pi/16) and cos(pi/16) will converge very quickly.

    • @IsYitzach
      @IsYitzach Před 18 dny +2

      I would have done something similar myself. I don't know if I would have invoked the trig identities, but I would have considered it.

  • @trwn87
    @trwn87 Před 19 dny +4

    Instant subscription. Perfect intro into math amd coding combined for oeople unfamiliar with it. Keep it up!

  • @MelonLord8
    @MelonLord8 Před 21 dnem +83

    Excellent video mate! However, wouldnt a taylor series be easier for a calculator to deal with?

    • @9remi
      @9remi Před 21 dnem +5

      yes..

    • @TheUnqualifiedTutor
      @TheUnqualifiedTutor  Před 20 dny +98

      A Taylor series is easier for a human because the equation is shorter. However computers/calculators work in a binary number system (base 2). So the multiplication by powers of 2 is very easy for a computer because it just requires all the digits to be shifted (like how multiplication by powers of 10 is done by shifting the digits in our natural base 10 system.) This is why we used the 2^-n in the equations as this is easy to calculate for computers, maybe I should have included this in the video. Thanks

    • @sepdronseptadron
      @sepdronseptadron Před 19 dny +26

      ​@@TheUnqualifiedTutor Slight correction/addition,
      Since we're dealing with floats, we don't shift the digits (as in bit shifting)
      floats are represented in the form of sign*mantissa*2^exp (a bit simplified, look up IEEE 754 for the whole thing)
      so when we calculate 2^-n, we just subtract n from the exp part
      shifting the bits only works for integers

    • @angeldude101
      @angeldude101 Před 19 dny +1

      ​@@sepdronseptadron As far as I'm concerned, adding and subtracting from the exponent field is basically the same operation as shifting. The only real difference is that for floats it doesn't have the modular behavior that integers have. If you're writing a typical decimal number, you can multiply by 10 by writing a zero, or if you're using scientific notation you can do the same by adding 1 to the exponent.
      There's a C function called "ldexp" which is basically a shift for floating point numbers, taking an integer and adding it to the float's exponent field. If there was any flat operation to overload the shift operators to, it would be ldexp.

    • @user-hy8ju1yn5g
      @user-hy8ju1yn5g Před 18 dny

      ​@@angeldude101shifting bits is multiplying/dividing by powers of 2, to add/subtract you can't shift bits in a general case scenario

  • @cheezey3295
    @cheezey3295 Před 19 dny +27

    this guys gonna be huge in the future

  • @JohnDlugosz
    @JohnDlugosz Před 15 dny +2

    From the thumbnail, I thought it would be how modern calculators give symbolic answers for special cases when it recognizes them.
    IAC, what you described is called the CORDIC algorithm. It needs one iteration per bit of the answer, so 55 iterations seems right as that matches the mantissa of a double precision floating point value.
    CORDIC _can_ be implemented using only addition, subtraction, bit shifts, and table lookups -- no multiplication or division. Your code doesn't exploit this, and in fact uses division gratuitously. (division being horribly slow even on modern CPUs). This makes it the preferred algorithm for low-end calculators that use 8-bit microcontrollers.
    For a more capable CPU, the Taylor series takes fewer iterations and will need fewer as the angle is smaller.

  • @LemonCake101
    @LemonCake101 Před 19 dny

    Amazing video, I wish you the best your future efforts, and I can only hope you keep this quality up!

  • @il_panda1979
    @il_panda1979 Před 8 dny

    thanks a lot. this has been a question at the back of my mind for a lot of time

  • @yogoc3432
    @yogoc3432 Před 19 dny +23

    Pretty cool! Though if we don’t have functions for sine and cosine, shouldn’t we also not have functions for arctangent? Or is this actually the way computers calculate it?

    • @cody8743
      @cody8743 Před 19 dny +2

      i have no experience, but they are all the same so you can probably just precalculate and store them

    • @adw1z
      @adw1z Před 19 dny +8

      There are many different ways to approximate functions usually, some less computationally costly than others. For example, arctan(x) is the integral from 0 to x of 1/1+u^2 du, and there are so many ways to approximate integrals such as this. The way in which the function is computed depends on the type of computer/calculator you are using

    • @communismwizard8198
      @communismwizard8198 Před 19 dny +4

      You’re only taking the arctan of a small set of numbers (negative powers of two), so yes recalculating and storing will work. Whereas for the final trig functions themselves, any number could be the input

    • @danix30001
      @danix30001 Před 19 dny +4

      You could have a table of atan(2^-n) that is fixed for every calculation of the sin, cos and tan

  • @Faroshkas
    @Faroshkas Před 18 dny +1

    Hello, what app do you use for that blackboard? I thought it looked very cool.

  • @auztenz
    @auztenz Před 19 dny +19

    Wow this vedio is very underrated. Excellent subscribed

  • @simonwillover4175
    @simonwillover4175 Před 19 dny +3

    8:08 the ** operator also works. i.e: 2**(-n)

  • @markthompson2874
    @markthompson2874 Před 19 dny +1

    I remember in the 70's my dad brought home a TI calculator that had trig functions. Being about 8, I had no idea what they mean but I thought it was interesting that the calculator would take a couple of seconds to handle these functions. I made it my goal in life to be able to use all the functions on a calculator (it also had log as well.) But always wondered why it took so long to calculate sin, now I know.

  • @sometwo7429
    @sometwo7429 Před 19 dny +6

    Damn, i didnt know howtobasic was a mathematician 💀

  • @berkberilbayraktar8301

    this channel is a gem how i just saw this

  • @joshuao4928
    @joshuao4928 Před 18 dny +1

    Cool video! If you want to make those print statements a little easier to write and more readable, you can put an 'f' before the quotes and use curly brackets to avoid needing the str() functions. As in print(f"sin({θ}) = {y}")

  • @arduous222
    @arduous222 Před 9 dny

    Something worth noting here is, you still need to calculate arctan(2^-n) somehow, which is also a trig function. However, given this is very close to 2^-n, you can simply remove arctan for larger order terms, and perhaps hard-code first few terms to further decrease error.

  • @jackkalver4644
    @jackkalver4644 Před 19 dny

    In degrees, use angle bisection as approximation. In radians, use the power series.

  • @MCPicoli
    @MCPicoli Před 16 dny +1

    How do you get rid of the atan() function in the code? We're not supposed to use trig functions here, unless there is a video explaining how to approximate atan() without other trig functions!

  • @itz_mario.
    @itz_mario. Před 18 dny

    or simply use binomial expansion of trig functions, define the function, replace the x with the variable name in the function parameter, keep writing as many terms as you can then you will get almost identical results to real values

  • @steamnotstem9047
    @steamnotstem9047 Před 10 dny

    being an actual python programmer, seeing the beginner tactics (like concatenation instead of functional strings or using Unicode characters as variables, or printing instead of returning) made me remind myself that beginners don't need to follow python conventions when their methods work. This was before I noticed you used curly brackets.
    (no hard feelings, great video)

  • @MrBeiragua
    @MrBeiragua Před 5 dny

    This means that the calculator needs to have a arctan(x) table in the memory or defined somehow for it to calculate sin(x)?

  • @gky93
    @gky93 Před 11 dny

    You can just use tailor series, it works well with small numbers

  • @wetwillyis_1881
    @wetwillyis_1881 Před 18 dny +4

    Imagine if a business major sees this. I think they’ll explode. Math majors may be sad, depressed, lonely, and overworked, but at least we can understand shit like this!

  • @BryanLu0
    @BryanLu0 Před 18 dny

    4:51 I understand how the arctan values can be precomputed, but how do you calculate the cosine?

    • @BryanLu0
      @BryanLu0 Před 18 dny +1

      Ok, based on the Wikipedia article, the part inside the product can be written as, 1/sqrt(1+2^-n) which is much more manageable to calculate

  • @TannerJ07
    @TannerJ07 Před 11 dny

    I love the part where you used wolfram alpha to make you own trigonometric equation

  • @drstrangelove09
    @drstrangelove09 Před 18 dny

    I coded up CORDIC many years ago and was going to implement it in a FPGA but got bogged down with the floating point conversions.

  • @LaMirah
    @LaMirah Před 17 dny

    7:54 Python uses the same double-asterisk operator as FORTRAN for exponentiation, so 2ⁿ would be written as `2 ** n`. Math.pow() always returns floating point numbers as a result, whereas the double-star operator will return integer values when appropriate.

  • @jacksc9855
    @jacksc9855 Před 18 dny

    Acktually the sin is calculated using multiple techniques.
    Firstly, you only need to calculate the first quarent of the sin. Since other quarent can be calculate using trig.
    Secondly, look up table is used for common value like π/12, π/6, π/4, π/3, π/2 and more.
    Thirdly, values are close to 0 are return without calculation.
    Depend on how accurate the approximation need to be, cordic and Chebyshev polynomials can be use.

  • @NStripleseven
    @NStripleseven Před 19 dny +1

    Why does the algorithm for finding trig functions need you calculate arctan? How does it do that?

    • @sowndolphin5386
      @sowndolphin5386 Před 19 dny

      dont you use a knife to open another knife's box, or use the seed that an already-grown tree gives, to make another tree, dont question

    • @hallrules
      @hallrules Před 19 dny +1

      either a lookup table (precalculated arctan values by hand probably) or "i used the arctan to find the arctan"

  • @Sudipto911
    @Sudipto911 Před 19 dny +1

    Great video bruv! Just remember me when you have millions of subscribers😃

  • @pranaypallavtripathi2460

    why can't we use infinite series expansion of sin, taking the first n terms such that it gives answer within accepted error limit?

  • @zhixinhuang4084
    @zhixinhuang4084 Před 13 dny +1

    What will you do? A B C or D?
    A: You can always go to the park
    B: You can always get to work on time
    C: You can always make a PERFECT triangle
    D: You go to Paris every year
    E: you ALWAYS get what you want

  • @mrtnsnp
    @mrtnsnp Před 18 dny

    I do get some weird values. π/4 stops after 2 iterations, but ends up at the really wrong value (0.6072529350088812 instead of 0.7071067811865475). And cos(0) is really wrong, after 1 iteration. For π/2 the sin and cos are fine, but understandably the tan value is a bit wonky.

  • @yigitrefikguzelses291
    @yigitrefikguzelses291 Před 19 dny

    This was really a tutoriel that I watched with curiosity until the end. I liked both the math and computer part very much. My only question is, cos(arctan(1)).cos(arctan(2)).cos(arctan(3))... I think it is not appropriate to calculate it on the computer. Because we used trig again?
    Also i _think_ you can use Taylor Series of sinx , cosx, or tanx for example:
    sinx ~ x -x^3/3! + x^5/5! -x^7/7!

  • @borbzaby
    @borbzaby Před 19 dny +1

    Nice video. I didn’t understand everything but it was pretty interesting 👍

  • @charlieborchardt2066
    @charlieborchardt2066 Před 15 dny

    "But wait, that requires cos and sin."
    "Aaaarerggghg!!!!!!!!!" Got me dying. 💀 Eggs in a blender.

  • @its_aidan
    @its_aidan Před 19 dny +1

    this is amazing

  • @rieder990
    @rieder990 Před 18 dny

    Good video!

  • @beaverbuoy3011
    @beaverbuoy3011 Před 19 dny +2

    Very nice!

  • @xbia1
    @xbia1 Před 18 dny +1

    Iteration isn't the fastest method and there's a chance that change never reaches zero because of finite precision. It's better to use a polynomial or rational function. See Computer Approximations by J.F. Hart et al.

  • @guush890
    @guush890 Před 14 dny

    instead of math.pow, you can do 2**-n, no idea if it has the same time complexity tho

  • @simonyi912
    @simonyi912 Před 4 dny

    Confirmed, Wolfram Alpha existed before calculators did.

  • @GeorgiMomchilov
    @GeorgiMomchilov Před 18 dny

    The most underrated chanell on the platform

  • @shang_psycho7414
    @shang_psycho7414 Před 19 dny +1

    I’ve wanted to know this for a while

    • @user-zc5jz6bh2r
      @user-zc5jz6bh2r Před 19 dny +1

      sin(x) = (4x(180 - x)) / (40500 - x (180 - x))
      error margin: 0.0016
      maximum relative error is less than 1.8%
      Bhaskara I's sine approximation

  • @georgephilippe4028
    @georgephilippe4028 Před 15 dny

    The whole point of the original CORDIC (published by Jack Volder in 1957ish) was to replace computationally heavy/expensive multiplication and division in old memory-poor computers with additions/subtractions and some table lookups. Logs were also possible.
    Though based on some obscure 17th Century mathematics it was still a damn impressive algorithm.
    The code here would not have worked efficiently on early computers and calculators. In fact, it would have defeated the whole point of the original CORDIC.
    Interesting, though.

  • @jasonnong3305
    @jasonnong3305 Před 7 dny

    Fortunate that people were able to use wolfram alpha back in the day, despite not having a calculator

  • @gamingdiamond352
    @gamingdiamond352 Před 18 dny

    cool approximation of sin cos and tan, impressively interesting approach to programming it tho

  • @kavinbala8885
    @kavinbala8885 Před 19 dny

    i thought it used a parabolic approximation for 0-pi/2. then reflected and rotated that as necessary

  • @billr3053
    @billr3053 Před 17 dny +1

    Better to pronounce the sign() function as SIGNUM. Not “sine” - because that would confuse it with sin().

  • @mathematicalmachinery7934

    8:03 that's not "to the power of", that's "xor". XOR is a weird binary thingy, if you want "to the power of", use ** instead of ^

  • @mariobabic9326
    @mariobabic9326 Před 16 dny

    calculators actually have tables with all the sin values with the maximum precision they need. they dont directly calculate sin() because of perfomance

  • @jangelbrich7056
    @jangelbrich7056 Před 16 dny

    And I thought for half a century that mathematicians and programmers have zero emotions ...

  • @victorien3704
    @victorien3704 Před 19 dny +1

    Video: How to make a trig function
    8:45 : Ok first you have to use a trig function

  • @notohkae
    @notohkae Před 5 dny +1

    i love this

  • @theredstonehive
    @theredstonehive Před 3 dny

    If you're gonna use a trig function anyway (atan), why not just
    def trig(theta):
    return math.sin(theta)

  • @loulounya
    @loulounya Před 19 dny

    How does the calculator display it in a form like √2 /2 or 3π/2?

    • @loulounya
      @loulounya Před 19 dny

      or even something like (1+√2)/2

    • @BryanLu0
      @BryanLu0 Před 18 dny

      It's precalculated for some known values

  • @joaocordeiro6539
    @joaocordeiro6539 Před 4 dny

    Imagine being in 1956 without a calculator and having a Python interpreter...xD

  • @randospawn7495
    @randospawn7495 Před 19 dny +2

    I noticed the brackets immediately and was very confused by it, I was like:
    Why didn't we just do this in c or somethin and why did he do that?

    • @TheUnqualifiedTutor
      @TheUnqualifiedTutor  Před 19 dny

      You are eagle-eyed. I used python because its easier for beginners imo.

  • @xniyana9956
    @xniyana9956 Před 11 dny

    Interesting video but I don't like the fact that this algorithm uses a trig function to define other trig functions. I think it's sexier to derive trig functions from lower level math abstractions.

  • @GeomeTeamCraft
    @GeomeTeamCraft Před 19 dny +6

    Why are you so fucking funny lmao

  • @user-lu9fg7pc9q
    @user-lu9fg7pc9q Před 16 dny

    11:00 this jump scared me slightly

  • @Anife69
    @Anife69 Před 14 dny

    peak cinema of math

  • @mr.dragon.purple9209
    @mr.dragon.purple9209 Před 14 dny +1

    0:15 A

  • @dragoni_penguin
    @dragoni_penguin Před 18 dny

    now make an infinite precision pi calculator

  • @jonathandawson3091
    @jonathandawson3091 Před 19 dny +3

    The humor isn't quite for me. It's jarring and frankly distracting.
    Also, why do you use arctan to generate sin? How will you compute it if it is not available, since one should presume it is an equally complicated function?
    If the answer is taylor expansion, what's wrong with using good old taylor expansion for sin / cost / tan in the first place?

    • @BryanLu0
      @BryanLu0 Před 18 dny +1

      CORDIC is better for CPUs, as there is no multiplication needed

  • @noway2831
    @noway2831 Před 5 dny

    Okay, umm, how do you calculate arctan? You've kinda kicked the can down the road by relying on another function. Obviously you could do numerical integration but that would be slow as balls

  • @aaab6054
    @aaab6054 Před 18 dny +1

    Why use this approach over a Taylor / Maclaurin series?

    • @Tomyb15
      @Tomyb15 Před 18 dny +1

      Faster convergence and probably more numerically stable.

    • @aaab6054
      @aaab6054 Před 18 dny +1

      I've looked into it now and Taylor / Maclaurin series definitely converge faster(as I suspected), but the CORDIC algorithm he is using is faster for the CPU.

  • @valcubeto
    @valcubeto Před 15 dny

    When I saw the brackets I died

  • @diogoduarte4097
    @diogoduarte4097 Před 19 dny

    I have subscribed

  • @CesarGrossmann
    @CesarGrossmann Před 18 dny

    Legend says the CORDIC isn't used anymore.

  • @o_s-24
    @o_s-24 Před 15 dny

    Why not use Taylor series approximations?

  • @AbdallahAhmed-qz6uu
    @AbdallahAhmed-qz6uu Před 13 dny

    can't you just use maclaurin's expansion for the first couple terms

  • @j7ndominica051
    @j7ndominica051 Před 15 dny

    I had to stop watching a few minutes in because I couldn't focus afraid of a scene with wasted eggs and phone books sudddenly appearing.

  • @rifatbhuiyan2543
    @rifatbhuiyan2543 Před 18 dny

    I thought calculators use Taylor's series. What's wrong with that?

  • @johnplays9654
    @johnplays9654 Před 15 dny +1

    С) Taylor series

  • @user-vt7kt6ny3o
    @user-vt7kt6ny3o Před 19 dny

    ok but how to calculate the atan then?

    • @carultch
      @carultch Před 16 dny

      You can calculate arctan as an integral of 1/(x^2 + 1) dx. Use Simpson's rule to evaluate this integral, and it can find arctangent.

  • @ze5os427
    @ze5os427 Před 19 dny

    8:15 or you can use the ** operator

  • @krishnachoubey8648
    @krishnachoubey8648 Před 18 dny

    8:13 Could've just used the ** (double-star) operator.
    if you're worried about any performance issues.... IDGAF HE'S PROGRAMMING IN PYTHON FOR FUCK'S SAKE

  • @philipstoop1955
    @philipstoop1955 Před dnem

    Watcing this as a programmer hurts.

  • @dragoni_penguin
    @dragoni_penguin Před 18 dny

    imagine not waiting until deltamath was invented

  • @raiden.b6163
    @raiden.b6163 Před 19 dny +5

    Also me, who knows what sin 60 degrees is and also knows that 60 degree = 1.047 radian. so i just approx sin of 1 radian as sin of 60 degrees which gives me 0.86. I call that good enough and move on. ᕙ(⇀‸↼‶)ᕗ + 1 sub

  • @alguem24
    @alguem24 Před 18 dny

    I really liked the video but the python part made we want to bang my head

  • @excelmaster2496
    @excelmaster2496 Před 19 dny +3

    How does a calculate find atan(2^-n)?

    • @kebien6020
      @kebien6020 Před 19 dny +6

      Since it only ever uses atan(1/2), atan(1/4), atan(1/8) up to atan(1/2^maxIterations), you can pre-calculate those and stick them into a lookup table

    • @hallrules
      @hallrules Před 19 dny +3

      @@kebien6020 wait how do u precalculate it

    • @spaghettiking653
      @spaghettiking653 Před 19 dny

      Maybe Maclaurin expansion, then print all the values and write them into a big list

    • @BryanLu0
      @BryanLu0 Před 18 dny

      ​@@hallrulesarctan = integral 1/(x² + 1) dx
      The question is how do you then take the cosine?

  • @kelvenlim9283
    @kelvenlim9283 Před 18 dny

    How to find sin of whatever? Use tan. But how do I find the tan of whatever?

  • @MinnalBot_
    @MinnalBot_ Před 2 dny

    0:17 ☠️

  • @megablademe4930
    @megablademe4930 Před 6 dny

    I guess he used unicode characters for demonstation purposes, but please don’t. Use emojis instead.

  • @honsthebronze
    @honsthebronze Před 16 dny

    ERORR: division by zero line 7 and 13

  • @wetwillyis_1881
    @wetwillyis_1881 Před 18 dny +1

    Imagine if Aliens come down and see us doing this, and just pull out a protractor and say “guys, why aren’t you just using these with scale models?”

  • @Snurklll
    @Snurklll Před 19 dny +1

    I actually asked myself 2 days or so ago

  • @paradiselost9946
    @paradiselost9946 Před 18 dny

    but this isnt how a calculator does it?
    wheres the half adders? the full adders? the shift register?
    wheres the decimal to binary conversion?
    the complements of 9?
    all i saw was someone write code, that is then compiled by some program to hex, or machine code, and THAT is utterly different to what a calculator is actually doing to perform this, or any other calculation...
    try busting down the hex into opcodes and then stepping through how the actual processor deals with the code loaded to it...

    • @BryanLu0
      @BryanLu0 Před 18 dny

      There's no way this video would've hit the algorithm if he actually wrote machine code lol

  • @stormswindy3013
    @stormswindy3013 Před 11 dny

    the frustrated AUURRGHHH 🥚