baby calculus vs adult calculus

SdĂ­let
VloĆŸit
  • čas pƙidĂĄn 30. 06. 2024
  • Learn the epsilon-delta definition at Brilliant 👉 brilliant.org/blackpenredpen/ (20% off with this link!)
    Baby calculus vs adult calculus: evaluating the limit of 1/x when x goes to 2. Most of us know the answer is 1/2 because the function 1/x is continuous at x=2. But how do we prove the limit is indeed 1/2 in adult calculus (aka real analysis)? The answer is we will have to use the epsilon-delta definition of a limit. Here’s my most detailed introduction to the epsilon-delta definition ‱ epsilon-delta definiti... 0
    0:00 baby calculus
    0:13 adult calculus
    11:30 check out Brilliant
    🛍 Shop math t-shirts & hoodies: bit.ly/bprpmerch
    10% off with the code "WELCOME10"
    ----------------------------------------
    **Thanks to ALL my lovely patrons for supporting my channel and believing in what I do**
    AP-IP Ben Delo Marcelo Silva Ehud Ezra 3blue1brown Joseph DeStefano
    Mark Mann Philippe Zivan Sussholz AlkanKondo89 Adam Quentin Colley
    Gary Tugan Stephen Stofka Alex Dodge Gary Huntress Alison Hansel
    Delton Ding Klemens Christopher Ursich buda Vincent Poirier Toma Kolev
    Tibees Bob Maxell A.B.C Cristian Navarro Jan Bormans Galios Theorist
    Robert Sundling Stuart Wurtman Nick S William O'Corrigan Ron Jensen
    Patapom Daniel Kahn Lea Denise James Steven Ridgway Jason Bucata
    Mirko Schultz xeioex Jean-Manuel Izaret Jason Clement robert huff
    Julian Moik Hiu Fung Lam Ronald Bryant Jan Ƙehåk Robert Toltowicz
    Angel Marchev, Jr. Antonio Luiz Brandao SquadriWilliam Laderer Natasha Caron Yevonnael Andrew Angel Marchev Sam Padilla ScienceBro Ryan Bingham
    Papa Fassi Hoang Nguyen Arun Iyengar Michael Miller Sandun Panthangi
    Skorj Olafsen Riley Faison Rolf Waefler Andrew Jack Ingham P Dwag Jason Kevin Davis Franco Tejero Klasseh Khornate Richard Payne Witek Mozga Brandon Smith Jan Lukas Kiermeyer Ralph Sato Kischel Nair Carsten Milkau Keith Kevelson Christoph Hipp Witness Forest Roberts Abd-alijaleel Laraki Anthony Bruent-Bessette Samuel Gronwold Tyler Bennett christopher careta Troy R Katy Lap C Niltiac, Stealer of Souls Jon Daivd R meh Tom Noa Overloop Jude Khine R3factor. Jasmine Soni L
    ----------------------------------------
    đŸ’Ș If you would also like to support this channel and have your name in the video description, then you could become my patron here / blackpenredpen

Komentáƙe • 256

  • @blackpenredpen
    @blackpenredpen  Pƙed 2 lety +52

    Learn math from Brilliant 👉 brilliant.org/blackpenredpen/ (20% off with this link!)

  • @DokterrDanger
    @DokterrDanger Pƙed 2 lety +121

    *When you look at the board:* 0:31
    *When you look outside of the window for lim x->2 (1/x) milliseconds:* 11:24

  • @marelleclejon6694
    @marelleclejon6694 Pƙed 2 lety +255

    "this is a horrible mistake, but it's not a big problem"

    • @blackpenredpen
      @blackpenredpen  Pƙed rokem +33

      😆

    • @PandaGMD
      @PandaGMD Pƙed rokem +16

      If that quote were true, that would solve all of my life problems.

  • @tom13king
    @tom13king Pƙed 2 lety +466

    I discovered your channel when I was in Sixth Form (16-18 year olds in the UK) about 5 years ago. At the time, I had only just started getting into maths and I thought the crazy integrals you did were really funny and interesting (I remember the cube root of tan(x) in particular). I showed some of the teachers the DI-table method you use for integration by parts, and one was so impressed she said she would use it too. I went on to do maths at uni and I've just found out I will graduate with a First. Even though I ended up not doing much like what you do on your channel (I preferred algebra, in particular ring theory, Lie algebras and algebraic geometry), you undoubtedly played a big role in my early interest in maths. Thank you for inspiring me.

    • @finlay5789
      @finlay5789 Pƙed 2 lety +5

      This is awesome. I just finished my a-levels, and can only hope I can experience a similar situation :D

    • @tom13king
      @tom13king Pƙed 2 lety +3

      @Ehud Kotegaro I assume you meant to make this a separate comment lol. But yes, I was also thinking that the result immediately follows from the theorem that a function is continuous at a point if and only if its limit at the point is just its value at the point. On the other hand, you could think of this as proving 1/x is continuous at 2.

    • @tom13king
      @tom13king Pƙed 2 lety +4

      @@finlay5789 I assume you're doing maths at uni? If so, good luck, but be aware that maths at uni isn't about calculating limits and integrals like most of this channel (this is geared towards Americans), you're learning theorems and proofs. This particular video however is a good example of what you might do in Analysis.

    • @spicyy812
      @spicyy812 Pƙed rokem +3

      Lol i remember my teacher giving me LESS points on an integral i solved with the DI method on a test because he'd never heard of that method. The function was something like x^3*sinx and i just couldnt be bothered solving that with standard IBP

    • @MrUtah1
      @MrUtah1 Pƙed rokem +1

      Did you do further maths a level?

  • @upholdjustice372
    @upholdjustice372 Pƙed rokem +134

    Baby Calculus : limit as x --> 2 of 1/x = *1/2*
    Adult Calculus : limit as x --> 2 of 1/x = *0.5*

  • @andrewchang7194
    @andrewchang7194 Pƙed 2 lety +158

    If you wanna know how crazy calculus gets, goes even further. I know we only did limits here, but if you do differentiation and integration, all of it fits under the topic of differential forms. Basically, if you want to differentiate and integrate over arbitrary smooth manifolds (that are not R^n), then you just need to introduce the concept of a tangent space, the ideas of a smooth manifold (charts, atlases, partitions of unity), and some concepts from abstract algebra like exterior derivatives, wedge products. This defines differentiation and integration both intrinsically and extrinsically. And now you can now obtain the fundamental theorem of calculus in any dimension using something called Stokes’ Theorem.
    Then beyond this, you can study the algebra behind the exterior derivative, wedge product, and the types of algebraic structures that admit these (exterior algebras). Then you can go even further from that and learn about how category theory unifies a lot of these types of algebras that admit similar types of structure. Mathematics is one deep rabbit hole (:

    • @BlueSoulTiger
      @BlueSoulTiger Pƙed 2 lety +5

      ("one deep rabbit hole") ... whose denumerable branches aren't singularities, mostly ; ]

    • @yanntal954
      @yanntal954 Pƙed rokem +5

      Then you can exclude the law of excluded middles and get sets of numbers in [0, 0] that are not {0} and also have that every function over domain R be continues and infinitely differentiable.
      Seriously.

    • @badabing3391
      @badabing3391 Pƙed rokem +5

      What

    • @LucasDimoveo
      @LucasDimoveo Pƙed rokem

      does this fall under Differential Geometry?

  • @vnarayan18
    @vnarayan18 Pƙed 2 lety +364

    I got a 5 on AP calc BC, all thanks to you sir! 😊

    • @nuts5388
      @nuts5388 Pƙed 2 lety +4

      I made a 4 on ap physics

    • @xinpingdonohoe3978
      @xinpingdonohoe3978 Pƙed 2 lety +15

      Is that good or bad?

    • @nuts5388
      @nuts5388 Pƙed 2 lety +20

      @@xinpingdonohoe3978 very good, half of people fail which would be a 2 or lower, I made a 4 and the max is 5

    • @xinpingdonohoe3978
      @xinpingdonohoe3978 Pƙed 2 lety +8

      @@nuts5388 okay. Which country's/place's grade system is this?

    • @sushi_1233
      @sushi_1233 Pƙed 2 lety +18

      @@xinpingdonohoe3978 It's CollegeBoard's grading system for AP exams, which are standardized exams for high schoolers to prepare for college. I got a 5 on AP Calc BC as well

  • @morchel332
    @morchel332 Pƙed rokem +23

    Finally some adult content i dont have to close in panic when someone enters my room randomly.

  • @andrewkarsten5268
    @andrewkarsten5268 Pƙed 2 lety +63

    You could pick delta=epsilon instead of 2epsilon, since epsilon/2

  • @JM-us3fr
    @JM-us3fr Pƙed 2 lety +25

    Baby calculus was so short, I totally forgot we were comparing them by the end of the video.

  • @nukedoom
    @nukedoom Pƙed 2 lety +15

    I did my calculus classes long time ago. I wasn’t a bad student nor a genius, but I also liked math in general. I’m over 30 now and just realized how calculus works de facto. Man I just wish I could redo my classes with the insights you give us. 14 years ago I would be totally addicted to your channel hahahaha.

    • @HackedPC
      @HackedPC Pƙed rokem +1

      hahahaha 😂😂😏😒🙄🙁â˜čđŸ˜€đŸ˜ đŸ˜ĄđŸ€Ź

  • @stratonikisporcia8630
    @stratonikisporcia8630 Pƙed 2 lety +20

    11:30 "Our sponsor today, BLYAT"

  • @roberthuber2770
    @roberthuber2770 Pƙed rokem +1

    This is a great introduction to epsilon delta proofs... I will have to watch again with some pen and paper - thank you!

  • @spookyyy6603
    @spookyyy6603 Pƙed 8 měsĂ­ci

    In our university they are currently teaching real analysis and I have had problems with Limits and continuity. Really great to find this video, it helped me a lot! Thanks BPRP

  • @joshuarivera9600
    @joshuarivera9600 Pƙed 2 lety

    I think it's absolutely dope how you have a pair of last shot jordan retro 14's just sitting nice in the background!!

  • @littyfam5136
    @littyfam5136 Pƙed 2 lety +32

    Good thing I will be a legal adult by the time I take my AP Calc BC exam. I can use the epsilon-delta theorem for limits without having to worry about committing fraudulent behavior!

  • @darkmxth9010
    @darkmxth9010 Pƙed 2 lety +13

    Thanks so much for posting today. Down with the flu or maybe even COVID, and feel horrible right now. But your video made me forget my sickness for a little bitđŸ–€â™„ïžđŸ–€â™„ïž

    • @blackpenredpen
      @blackpenredpen  Pƙed 2 lety +3

      Oh no. Sorry to hear that. I wish you feel better soon!

    • @darkmxth9010
      @darkmxth9010 Pƙed 2 lety +2

      @@blackpenredpen Using calculus, I predict that the virus is dying off at a rate of 0.67% every hour. Using this, I predict that I will be fully recovered by [100/0.67 hours, too tired to do calculations] from now! (Totally a joke, just trying to hang in there)

    • @kristiyanivanov7414
      @kristiyanivanov7414 Pƙed 2 lety +1

      Same, got the COVID and it sucks real bad. Hang in there, take the meds and you're going to be fine.

  • @IdraCold
    @IdraCold Pƙed 2 lety +18

    The best explanation for epsilon delta proof I have seen so far, and I am in my last year of math.

    • @blackpenredpen
      @blackpenredpen  Pƙed 2 lety +2

      Thanks

    • @stephenbeck7222
      @stephenbeck7222 Pƙed 2 lety +2

      BPRP has several helpful videos going through this. I wonder if there is a playlist?

  • @WomenCallYouMoid
    @WomenCallYouMoid Pƙed rokem +1

    0:24
    Epsilon-Delta definition of limits -- for limits
    Weisserman M-test: to tell whether a series is uniformly converging or absolutely converging.
    5:00: abs.value of a qoutient? Me brain no comprende at "check."

  • @ynnafyzarc3988
    @ynnafyzarc3988 Pƙed 2 lety +4

    Thanks for teaching us sir!, Can you make a content about how you master MATH? Hope you notice this sir! Thank you in advance 💙💙💙

  • @srimmiu8621
    @srimmiu8621 Pƙed rokem

    well explained the demonstration of that limit

  • @mputuchimezie7966
    @mputuchimezie7966 Pƙed 2 lety +2

    Please can you make a video and explain the concept behind Epsilon Delta and why we need it when carrying out proofs involving calculus

    • @kingbeauregard
      @kingbeauregard Pƙed 2 lety +8

      Here is why we need it. You and I have seen the graph of y = 1/x, so we know what it looks like. But how do we really know it's continuous? How do we know that it doesn't have a discontinuity at x=3.2493 for example? Epsilon-delta is a way to prove that a function really is continuous. Calculus requires that we work with continuous functions, so it is necessary to prove that functions are continuous. (Fortunately, most functions are.)
      The goal of epsilon-delta is to show that, as f(x) gets closer and closer to "1/a", x must also get closer and closer to "a". Think of the graph of y = 1/x, and imagine a rectangle whose center is at (a, 1/a). Make this rectangle tall enough that the function never touches the rectangle's top or bottom edges. This rectangle has a height of 2*epsilon, and a width of 2*delta. Now, can you shrink this rectangle smaller and smaller (so it becomes less tall and also less wide), all the way to zero, and the function still never touches the top or bottom edges? If you can construct rectangles that do that, then it means that the limit really does approach 1/a.
      So, the epsilon-delta method is really about defining the proportions of the rectangles: if you can mathematically prove that you can create rectangles that operate as described, then the function must be continuous. That means establishing a relationship between epsilon and delta. It may be that the relationship works only when x is near a; that is fine, since limits are about a function's behavior near a specific point.

    • @mputuchimezie7966
      @mputuchimezie7966 Pƙed 2 lety +1

      @@kingbeauregard nicely explained via plain text.Now imagine how smoothly you can explain concepts using video. Thank you so much.

  • @leofoxpro2841
    @leofoxpro2841 Pƙed 2 lety +1

    i solved this problem like 5 hours ago, and now you uploaded the same problem !! đŸ€ŁđŸ€Ł

  • @ready1fire1aim1
    @ready1fire1aim1 Pƙed 2 lety +4

    What is the difference between Newton and Leibniz calculus?
    Newton's calculus is about functions.
    Leibniz's calculus is about relations defined by constraints.
    In Newton's calculus, there is (what would now be called) a limit built into every operation.
    In Leibniz's calculus, the limit is a separate operation.

  • @deleonmichaelr.2803
    @deleonmichaelr.2803 Pƙed 2 lety +2

    i love your shirts!

  • @Victual88
    @Victual88 Pƙed rokem

    start is gold

  • @-_-_-_-_
    @-_-_-_-_ Pƙed 2 lety +5

    I usually just say that the function looks nice enough to me around 2 and put a little box

  • @racool911
    @racool911 Pƙed rokem +1

    I'm gonna have to watch this one a few times. I'm not even sure what we did at the end

  • @Misteribel
    @Misteribel Pƙed 2 lety +3

    And here I was, thinking I understood limits. Now I feel like a baby! Thank you, now I’ve nightmares, I understand nothing đŸ˜±đŸ˜”â€đŸ’«đŸ˜‚

  • @Ninja20704
    @Ninja20704 Pƙed 2 lety +6

    Ive had to do similar proofs like this in my proofs lesson, but the problems were much simpler than this. Still, I find real analysis terrifying.
    (The problem was proving that for all epsilon > 0, if 0

    • @xghoulxx
      @xghoulxx Pƙed 2 lety

      Everyone has Real Analysis PTSD.
      Although I would say back when I took Complex analysis, that course truly killed me, but strangely, abstract algebra, number theory, and linear analysis was an easier pill to swallow xD.

    • @fix5072
      @fix5072 Pƙed 2 lety

      @@xghoulxx I can only speak for me and my classmates, but at least in Germany, real analysis 1 and 2 are probably the easiest classes in the early years at university. Abstract algebra is a little harder, others even worse..

    • @calvindang7291
      @calvindang7291 Pƙed 2 lety

      I remember using that result for some questions without ever proving it while wondering if I was allowed to or not. Though the proof is so trivial that it was indeed allowed to be used.

  • @MrbK-si5gk
    @MrbK-si5gk Pƙed rokem

    ŰŽÙƒŰ±Ű§ ۚۧۏ۱ Ű§Ù…ŰȘŰ­Ű§Ù†ÙŠ

  • @SuperYoonHo
    @SuperYoonHo Pƙed 2 lety +2

    Ha ha awesome thanks a lot Tomorrow is my birthday so can you please do a surprise video?

  • @SunWolfR
    @SunWolfR Pƙed rokem +1

    0:11, great answer

  • @d4rk_1egend
    @d4rk_1egend Pƙed 2 lety +4

    Can you do the indefinite integral of x^x dx please? Thank you!

    • @nestorv7627
      @nestorv7627 Pƙed 2 lety +2

      That intrgral cannot be expressed with elementary functions

    • @arcader30
      @arcader30 Pƙed rokem

      Hi.... You watch this for indefinite integral of x^x dx by BPRP... ^_^
      czcams.com/video/tIGnbH4qIjY/video.html

  • @Lumpy970253
    @Lumpy970253 Pƙed rokem +3

    4:19 x戆äč‹1 vs. 1 over x 😆

  • @klementhajrullaj1222
    @klementhajrullaj1222 Pƙed rokem

    More short: |x-2|/|2x| |x-2|/4 |x-2|2 => |2x|->4). 😀😉

  • @armanavagyan1876
    @armanavagyan1876 Pƙed rokem +1

    I saw this in your 101 limit video 7 hour 28 minute)

  • @animalkingdomv
    @animalkingdomv Pƙed 2 lety

    Great prof

  • @Mathicalminds
    @Mathicalminds Pƙed 2 lety

    Genius â€ïžđŸ”„ is always genius
    Good job 👌

  • @manla8397
    @manla8397 Pƙed 2 lety +9

    My background is physics. Can anyone explain to me why a long proof is necessary for proofing this limit?

    • @abhipsitbajpai2508
      @abhipsitbajpai2508 Pƙed 2 lety +13

      It somehow gives deep internal satisfaction to the mathematicians.

    • @tortillajoe9942
      @tortillajoe9942 Pƙed 2 lety +5

      It’s hard to see why it might seem necessary for this example because it’s continuous at that particular point. But how do you show lim x->2 (xÂČ-2x)/(x-2)=2. You probably recognize the common and will cancel it out. Doing a proof like this is the reason WHY we’re allowed to certain things like this.

    • @kingbeauregard
      @kingbeauregard Pƙed 2 lety +9

      I think the point is, how do you really know that a function is continuous? I mean, we can all envision what y = 1/x looks like on a graph, but we know that from graphing a whole bunch of points and connecting the dots. How do you really know that there aren't any discontinuities, other than the one at x=0 of course? Can you prove it? Sure you can say "I don't see why it WOULDN'T be continuous", but that's not really a proof.
      I get the feeling that, 99.9% of the time, these proofs are an abstract consideration; usually you and I can tell whether a function is going to be continuous just by looking at it. Even so, mathematical rigor is its own reward.

    • @manla8397
      @manla8397 Pƙed 2 lety +2

      @@kingbeauregard thank you Joe and kingbeauregard. I now understand why we need to go through all these difficult proofs but it is necessary if we want to be rigid. And now I can see the beauty of this proof now. Thank you.

    • @stephenbeck7222
      @stephenbeck7222 Pƙed 2 lety +1

      It’s less a ‘proof’ and more the actual definition of a limit. Now, we have further proofs which say if a function is of a certain form (e.g. for this one, rational functions where the denominator is not zero at this location) then the function is continuous. And we know that continuous functions have limits that are relatively easy to evaluate.

  • @pinguinauta9353
    @pinguinauta9353 Pƙed rokem

    0:39, no es necesario ya que la funciĂłn es continĂșa en un intervalo abierto que contiene a x=2. ÂżporquĂ© es continĂșa?. Toda funciĂłn polinomica es continĂșa, ademĂĄs el cociente de dos funciones continuas es continuo siempre y cuando el denominador no sea nulo. AsĂ­ que en este caso la funciĂłn f(x)=x es continĂșa para todo x, por otro lado g(x) = 1/f(x), es continĂșa para todo x que diferente de cero.

    • @ClaraDeLemon
      @ClaraDeLemon Pƙed rokem

      Te estĂĄs liando un poco. El ejercicio pide demostrar que el lĂ­mite de 1/x cuando x tiende a 2 es Âœ. Lo que hemos probado, (dado que 1/2 = Âœ) es que la funciĂłn 1/x es continua en x=2. SĂ­, los cocientes de funciones continuas son continuos cuando el denominador no es nulo, pero eso tambiĂ©n hay que probarlo, y se probarĂ­a de este mismo modo

  • @niroshchaminda3344
    @niroshchaminda3344 Pƙed rokem

    How can we solve when x tends to -3

  • @rupa3800
    @rupa3800 Pƙed 2 lety +1

    Hi would you mind this integral 1/((x-1)(3-x))

  • @farhansyabibi170
    @farhansyabibi170 Pƙed rokem

    Is there any example of some limit of f(x) that cant be proven because of this equation?

  • @ysk20k
    @ysk20k Pƙed rokem

    can anyone do this?
    They give three prime numbers, p, q, r. Solve that ³√p, ³√q, ³√r are not three characters (not necessarily consecutive characters) of any arithmetic suite.

  • @chrisglosser7318
    @chrisglosser7318 Pƙed 2 lety

    Next he’s going to tell me I can’t chew on my field extensions any more 😭

  • @numericalcode
    @numericalcode Pƙed rokem

    This was great

  • @andreybyl
    @andreybyl Pƙed 2 lety +1

    if epsilon < 1/2 then delta = 2/(1+2*epsilon) it more precise))

  • @willie333b
    @willie333b Pƙed 2 lety

    Can you put infinity on minimum đŸ€”

  • @MyOneFiftiethOfADollar
    @MyOneFiftiethOfADollar Pƙed 2 lety +1

    Slightly disappointing for me since I would never discover the trick of choosing a delta that is the min of a two element set that includes 1(or some other convenient constant)
    Delta is a function of Epsilon as your limit proof showed.
    Thanks for the mild criticism of the term arbitrary in conjunction with phrase “arbitrary epsilon” Epsilon > 0 is all that is necessary 😀

  • @robalexnat
    @robalexnat Pƙed rokem

    I am confused, what about the f(x)-L bit why wasn't that explicitly mentioned in the proof? Why does simply substituting epsilon for delta work so neatly when they are addressing two related butt different inequalities?

    • @chri-k
      @chri-k Pƙed rokem

      I am not sure at all that this was what you asked for - it’s probably not.
      “For any Δ there exists a ÎŽ such that
” means that ÎŽ is a function of Δ, at least in this context, not sure if this is always the case.
      |f(x)-L| < Δ and 0 < |x-a| < Ύ(Δ)
      the proof is complete once ÎŽ is found.
      At least in this case, probably in most, it is easiest to find some other function h(‱), such that
      |f(x)-L| < h(Ύ(Δ))
      in this case he found h(x) = x/2
      |1/x-1/2| < Ύ(Δ)/2 and 0 < |x-2| < Ύ(Δ)
      Now you can just notice ( maybe ) that if Ύ(Δ) = Δ, nothing breaks, and the proof would thus be complete.

  • @user-er6zr1tm3i
    @user-er6zr1tm3i Pƙed rokem

    If there is no uncertainty at the point, then it makes no sense to fence the garden.

  • @anmolvashistha2366
    @anmolvashistha2366 Pƙed 2 lety

    besides maths you have an excellent skill of interchanging markers 😂

  • @Mark16v15
    @Mark16v15 Pƙed 8 měsĂ­ci

    I recall my first week or so of high school calculus being taught this "adult" nonsense before we really got to the good stuff like derivatives.
    I say "nonsense" because basically it was teaching how to prove the obvious, which could have been done a different way, especially with the invention of the calculator. (Also, even test makers didn't waste time by having it on the AP exam, which by the way I scored a 5 on which allowed me to place out of Calc I and II in college.) In this example, you would have one student input 1.99 into the equation 1/x where he gets .5025 on his calculator, and see if another student can come up with a closer number to 2 (such as 1.999) on his calculator and see if his answer is closer to .5 than .5025 (which of course it is, .50025), and then ask if anyone can come up with an x value, but not 2, which results in an answer even closer to .5. The point of the exercise is that when you are dealing with limits, someone can always come up with a number closer to the limit than someone else. So, for example, one student posits a 1. with a billion 9's behind the point, another comes along and counters with a 1. with a trillion 9s behind the point. All that could be done in less than one day in class.
    Maybe for those students interested in pursuing a degree in math, which thrives on proofs, the teacher could provide a few homework exercises for them to prove the obvious just for their enjoyment.

  • @paolo_benda
    @paolo_benda Pƙed 2 lety +5

    There is a theorem that is quite easy to prove which states that power functions are continuous in every point of their domain. If a function is continuous in a certain point by the definition of continuity of a function the limit can be evaluated by evaluating the function in that point. Who knows the proof of this theorem and uses simple substitution should than be considered as part of the “adult calculus” set.

    • @kingbeauregard
      @kingbeauregard Pƙed 2 lety +1

      Oooh, Ima take a stab at it. If we're trying to prove the limit of x^n at x=a, then:
      | x^n - a^n | < epsilon
      | (x - a) * (x^(n - 1) + x^(n - 2)*a + x^(n - 3)*a^2 ... + a^(n-1)) | < epsilon
      |x - a| * | x^(n - 1) + x^(n - 2)*a + x^(n - 3)*a^2 ... + a^(n-1) | < epsilon
      So from there, set an arbitrary limit on delta, figure out what the maximum value of the second absolute value is over that set of x-values (let's call it "M"), and we're left with |x - a| * M < epsilon.

    • @paolo_benda
      @paolo_benda Pƙed 2 lety +1

      @@kingbeauregard Well done! But instead to take the maximum it is better to take a majorant of that set, because to apply Weierstrass theorem f needs to be continuous in the closed interval [a-h;a+h], where h is a real number. The proof would than be circular. You can also prove it, considering Lim |x^(n+h)-x^n| for h->0.
      It becomes than Lim|x^n||x^h-1|=0 because x^h-1∌(x-1)h for h->0.

    • @kingbeauregard
      @kingbeauregard Pƙed 2 lety +1

      @@paolo_benda I had never heard of a "majorant" until now. I see your point though, the majorant would be better.

    • @stephenbeck7222
      @stephenbeck7222 Pƙed 2 lety

      BPRP’s proof is like the Calc 1, week 1 homework assignment. Your version is like what the tutor tells the student to turn in because it’s more efficient and fits the topic though the student may not directly understand it, haha.

    • @kingbeauregard
      @kingbeauregard Pƙed 2 lety +1

      @@stephenbeck7222 After doing a LOT of thinking about epsilon-delta (and I'm not saying it's high-quality thought, just the best I'm capable of), I feel like the practical approach to arriving at a delta is, start with | f(x) - f(a) |, find some way to peel off an |x - a| term, and remove any x's from whatever's left. It just so happens it's real easy to pull an |x - a| out of | x^n - a^n |. I'll take it!

  • @nguonlyuon
    @nguonlyuon Pƙed rokem

    What grade are you in brother?

  • @nobe
    @nobe Pƙed rokem

    11:08 why is it that you wrote "less than or equal to epsilon" but also wrote "equals epsilon"?

    • @Rizmath
      @Rizmath Pƙed rokem

      in one line its like writing |f(x)-1/2| < delta*(1/2)

  • @pacome_f
    @pacome_f Pƙed 2 lety +1

    Well, we just need to say that 1/x is continuous in the interval [1;3], which means by definition that for a in [1;3]: lim x->a of f(x) = f(a), from there, lim x->2 of 1/x = 1/2 !

    • @user-en5vj6vr2u
      @user-en5vj6vr2u Pƙed 2 lety +6

      Need a limit proof for that too

    • @MyOneFiftiethOfADollar
      @MyOneFiftiethOfADollar Pƙed 2 lety +3

      You only know 1/x is continuous in that interval via epsilon/delta proof of its continuity

    • @xXJ4FARGAMERXx
      @xXJ4FARGAMERXx Pƙed rokem +1

      Proofs relying on other proofs, perfect!

  • @BnSadiq
    @BnSadiq Pƙed 2 lety

    Eid Mubarak for all mathematicians ❀❀

  • @neilgerace355
    @neilgerace355 Pƙed 2 lety +4

    When you learn what s.t. stands for, you have passed baby calculus.

  • @89alcatraz89
    @89alcatraz89 Pƙed rokem

    This seems unnescessrily complicated both in definition and in proof.
    The way I was taught the definition of limit didnt have the delta part it just had that there exist a such that |f(a)-L|

  • @kevinqiu8089
    @kevinqiu8089 Pƙed rokem

    God i wish i saw this before my calc exam

  • @dennisfeil2000
    @dennisfeil2000 Pƙed 2 lety +1

    Why did we choose delta to be 1 for the proof? Can I just pick out any number and check whether it works?

    • @Purplesjh
      @Purplesjh Pƙed 2 lety +1

      yeah he said choose any number we want as long as it's > 0. He chose 1 to make it simple. Right everyone?

    • @xinpingdonohoe3978
      @xinpingdonohoe3978 Pƙed 2 lety +2

      ​@@Purplesjh Yes

    • @kingbeauregard
      @kingbeauregard Pƙed 2 lety +2

      We should talk about the arbitrary values for a second. When you do epsilon-delta proofs, you're going to need to rework | f(x) - f(a) | into a form that is something like |x - a|*(some expression without any x's in it). You're usually going to reach a point where you can't get rid of any lingering x's through sheer algebra, and | f(x) - f(a) | has turned into |x-a|*g(x). That's when you cheat. Since we're really only concerned with values in the vicinity of x=a, we can restrict ourselves to a region that is as arbitrarily small as we choose. Then we can do some math and determine that, in that region, g(x) has a maximum value "M", so we can swap out g(x) and instead work with |x-a|*M.
      Why are we allowed to do this cheat? Well, it's a squeeze proof. If we are saying that |x - a|*M is bigger than |x - a|*g(x) over the entire region in question, and |x - a|*M has a limit at (a, L) (and of course it does, it's a straight line), then it follows that |x - a|*g(x) must likewise have a limit at (a, L).
      So then, why a minimum of "1" specifically? Primarily for mathematical ease, but also, it doesn't make us trip over that discontinuity at x=0. A minimum of "1" is a fine choice if we're concerned with x=2. It's a terrible choice if we're concerned with x=0.5.

    • @Purplesjh
      @Purplesjh Pƙed 2 lety

      @@kingbeauregard wow thanks a lot 😊

  • @pneujai
    @pneujai Pƙed 2 lety +2

    no u were correct with add2 add2 add2

  • @idjles
    @idjles Pƙed rokem +2

    you should have done examples with epsilon=0.0001 and epsilon=0.00000000001 to make it really clear....

    • @blackpenredpen
      @blackpenredpen  Pƙed rokem +2

      I have done ΔΎ many times. You can see the description for the most detailed explanation I have. 😃

  • @sadiqueruddra5856
    @sadiqueruddra5856 Pƙed rokem

    wow, you are getting young day by day.

  • @iamhumanOWO
    @iamhumanOWO Pƙed 2 lety

    Me first few seconds within the video: Yeah I know that...
    Me 2 minutes in: What.

  • @dlrmfemilianolako8
    @dlrmfemilianolako8 Pƙed 2 lety +3

    Very very interesting !
    Please can you help me . I want to know that which is the best mathematical analysis 1 and 2 book ?

    • @paolo_benda
      @paolo_benda Pƙed 2 lety +1

      There is not. The best best book of mathematical analysis is the one you write.

    • @dlrmfemilianolako8
      @dlrmfemilianolako8 Pƙed 2 lety +1

      @@paolo_benda thank you for your reply

    • @xghoulxx
      @xghoulxx Pƙed 2 lety

      This is a hard question to answer because there are many real analysis books to be made and they are a bit subjective in terms of how you learn the subject. Some books offer no pictures and are all text, and some can have various illustrations but gloss over the fine details through writing, It really depends on what type of learning works best for you.
      When I took analysis back in 2011, my instructor was a co-author for the textbook Elementary Classical Analysis
      Jerrold E. Marsden, Michael J. Hoffman. My instructor was close to my top 5 most humble mathematicians I ever met and this book was very approachable to the subject. By the time I was graduating, he was giving us drafts of the 3rd edition for free for us to find any errors or input, so my natural bias is to recommend this book, lol.

    • @dlrmfemilianolako8
      @dlrmfemilianolako8 Pƙed 2 lety +1

      @@xghoulxx i am at first year in university for electrical engineer and I want to work on this subject that I have . But our book here is , lets say "weak " ., thats the reason why I asked this question

    • @xghoulxx
      @xghoulxx Pƙed 2 lety +1

      @@dlrmfemilianolako8 Hopefully my recommendation helps, real analysis is a tough beast! I'm glad I'm not in school anymore, haha.
      I should add, that my book recommendation can be found online most likely and a solutions manual if you're internet savvy enough. Maybe an older edition, but it's good to have plenty of references.

  • @oliverschmidt3082
    @oliverschmidt3082 Pƙed 2 lety

    The x =\= a in your explanation of the limit seems wrong for continuity, as it classifies 1-point indicator functions as continous

    • @stephenbeck7222
      @stephenbeck7222 Pƙed 2 lety

      I don’t know what a 1 point indicator function is, but he wasn’t defining continuity at any point. He was only defining the limit. For continuity you would remove the x=/= a condition.

    • @oliverschmidt3082
      @oliverschmidt3082 Pƙed 2 lety

      My Point is about That his definition fails for non contionous functions.

    • @stephenbeck7222
      @stephenbeck7222 Pƙed 2 lety

      Oliver Schmidt no it doesn’t. If he didn’t have “0 < 
” on his “suppose” line then it would fail for functions with a removable discontinuity.

    • @izaakvandongen7404
      @izaakvandongen7404 Pƙed rokem

      You are right that in the usual definition of continuity, there is no requirement that x != a. That doesn't make his definition wrong! He's defining a different, but related concept. You can actually give an equivalent definition of continuity in terms of limits as "f is continuous at a if lim_{x -> a} f(x) = f(a)", which you may check does indeed exclude indicators of singletons.
      The reason you can't have x = a in the definition of a limit is that you need to be able to evaluate limits like (sin x)/x at 0, where the function you are taking a limit of might not even be defined. The most famous example is the difference quotient in the definition of the derivative.

  • @mathevengers1131
    @mathevengers1131 Pƙed 2 lety

    let's hope that it's only asked as a mcq and not a long answer your question

  • @theimmortalphysicsmaths3962

    Okay

  • @Mohammed-oh8rs
    @Mohammed-oh8rs Pƙed rokem

    Happy birthday

  • @user-go6dj6lg8b
    @user-go6dj6lg8b Pƙed 2 lety +2

    4:17
    è€ćž«éŒ„äž­æ–‡è‹±æ–‡ćœ±ç‰‡ć·Čç¶“éŒ„ćˆ°ćż«éŒŻäș‚äș†

  • @finmat95
    @finmat95 Pƙed rokem +1

    Oooooh no, epsilon-delta definition is a pure NIGHTMARE.

    • @kingbeauregard
      @kingbeauregard Pƙed rokem

      It doesn't have to be a nightmare. IMHO there are two parts to think about: the concept, and the technique.
      The concept: Suppose you are trying to prove the limit of f(x) = L at x=a. So, imagine a rectangle centered at (a, L) that has proportions such that f(x) never touches the top or bottom edges of the rectangle. Now, can you shrink that rectangle down to nothing, such that the function never touches the top or bottom edges? If you can mathematically prove that such a rectangle exists, then the limit must exist too. "delta" is all about the width of the rectangle, and "epsilon" is all about the height of the rectangle. Sooooo, all of this math is about figuring out whether such a rectangle exists, and if you pick a given epsilon, what size does delta have to be?
      The technique: You start with | f(x) - f(a) | < epsilon, and you want to wrestle with it until you get to the form |x-a| < (some function of epsilon). That |x-a| will become our delta. So you have to do a lot of algebra, and you can use one special trick: you can say that, if we limit our x values to a small distance from a, then within that range, the function will never cross the line |x-a|*(some constant that you determine with some side math). At that point, you've switched over to determining your epsilon against that line rather than the original function, but that's fine: since that line has the limit you want, so will the original function.

  • @johnlange4316
    @johnlange4316 Pƙed 2 lety

    It would be nice if I could understand half of what he says.

  • @evilesteye
    @evilesteye Pƙed 2 lety +1

    Feel left out bc I don't think there's a classification for 13 year old calculus

    • @pmxi
      @pmxi Pƙed rokem

      there you just graph it and eyeball it

  • @someon3
    @someon3 Pƙed 2 lety

    Extreme explanation. U don't need it to prove the limit is 1/2. 1/x is continuous, then you can just evaluate lim f(x) for x->c = f(c) for the theorem

    • @nestorv7627
      @nestorv7627 Pƙed 2 lety

      How do you know that 1/x is continuous?

    • @someon3
      @someon3 Pƙed 2 lety

      @@nestorv7627 cause it's x^-1, any kx^a is continuous

    • @nestorv7627
      @nestorv7627 Pƙed 2 lety

      @@someon3 that wasnt my point. Even then, the only way to show that kx^a is continuous is through epsilon-delta proofs. You get a better understanding of continuity, and calculus overall if you take your time to figure out why epsilon-delta proofs make sense and why they're important

    • @someon3
      @someon3 Pƙed 2 lety

      @@nestorv7627 of course, I'm just saying that following already proven theorems you can easily solve limits knowing it will he 100% true. For a better understanding of the theory u're right, for this reason in calculus you study both theorems/demonstrations and exercises assuming true things like continuous functions and so on

  • @hellopleychess3190
    @hellopleychess3190 Pƙed rokem +2

    I'm good at baby calculus

  • @kennethgee2004
    @kennethgee2004 Pƙed 2 lety +1

    no we do not have to prove it using the epsilon delta definition as the definition already proves the existence of limits. this is a finite limit, so by the proof of that we already have the proof in place and we can simply turn the mathematical handle.

    • @nestorv7627
      @nestorv7627 Pƙed 2 lety

      Youre using a circular argument. What prevents anyone from saying that the left limit is 1/3 and not 1/2?
      It may seem trivial to you, but he showed the more rigorous way of doing it because later on if you continue down the math route, you will need to do epsilon-delta proofs a lot

    • @kennethgee2004
      @kennethgee2004 Pƙed 2 lety

      @@nestorv7627 computer programmer so I am only interested in turning the mathematical handle. I am not saying that the epsilon delta proof is invalid or unnecessary. I am saying that the limit of finite series is already been proven. It is a valid argument to use already existing proofs without having to keep proving the existing proofs. Prove that 1+1=2. You see we do not always prove everything in a proof.

  • @kingbeauregard
    @kingbeauregard Pƙed 2 lety +12

    I am working on a loose set of mental rules for Always Getting Epsilon-Delta To Work. Here's what I've got so far, assuming we're trying to prove the limit of f(x) = L at x = a:
    1) Your first job is to figure out how to peel off a multiplier of |x - a|. You'll probably get there by applying some identity or technique that puts the f(x) and L together; for example, in this video, the secret was cross-multiplying. If we were doing sin(x), it would involve combining sin(x) and sin(a), and the trick there would be an identity that takes us into sin(x - a), and then doing an arcsin.
    2) Your next job is to get all the "x" terms out of the expression that's left after you have peeled off the |x - a|. You have two main tools for this and they are usually used in conjunction with one another: you can replace any terms in that expression with terms guaranteed to make the whole expression bigger (or at least no smaller), and you can also set an arbitrary range of x-values over which that replacement is valid. That will allow you to replace terms involving "x" with a constant.
    2a) You might need to use the two tools from #2 to peel off the |x - a| in #1. But it's more likely you can get there with straight algebra, so try to algebrize it into submission.
    3) About that arbitrary range: I've noticed that people get confused with the step where we say "delta = min { 1, ..." because they don't get why we're picking 1. Would it help un-confuse people to start with "delta = min { TBD, ..." and then later change the "To Be Decided" to "1" at the point we have to employ it? I don't know if it would be clearer that way. It might be. I think part of the problem is, it's not clear why "1" is a reasonable pick until you need to use it.

    • @kingbeauregard
      @kingbeauregard Pƙed 2 lety

      ... about "your first job" and "your next job", I guess you can approach them in whatever order you need to. Sometimes, you might need to do #2 before you can do #1.

    • @calvindang7291
      @calvindang7291 Pƙed 2 lety +2

      The idea with using 1 in the delta is just that you need to pick some random number, and for that case it's usually slightly nicer to use 1 than it is to use 0.459683 or whatever other number you'd pick. As long as that's emphasized, it's fine.
      The times I did an epsilon-delta as a class presentation, I didn't include the min at all. I just did "let delta = [awkward space] sqrt x" or whatever the function is, and then after I got to the point I needed to use a minimum, I scrolled back up to add the min{1, to it after explaining specifically why what I wrote wouldn't work if delta was more than 1.

    • @kingbeauregard
      @kingbeauregard Pƙed 2 lety

      @@calvindang7291 I like that!

  • @jonathanrijomojica8016
    @jonathanrijomojica8016 Pƙed 2 lety

    SĂșper đŸ’Ș

  • @kepler4192
    @kepler4192 Pƙed 2 lety

    17 gotta be your favourite number huh

  • @ultrio325
    @ultrio325 Pƙed 2 lety

    Me, who writes prf for proof:

  • @junkgum
    @junkgum Pƙed 2 lety

    That looks like 1/2-+0.0

  • @matthewtaylor1927
    @matthewtaylor1927 Pƙed rokem +1

    It seems like adult calculus is baby calculus with more steps.

  • @nmx333
    @nmx333 Pƙed 2 lety +4

    I came on and was ready to see some crazy looking adult calculus, then I realized I did this, proof last semester, I also realized that I am in fact and adult.đŸ˜„đŸ•Šïž

  • @carlod1605
    @carlod1605 Pƙed 2 lety +1

    Guess I don't wanna be an adult mathematician 😂

  • @user-ll3ht3cj5o
    @user-ll3ht3cj5o Pƙed rokem

    I love mathematics

  • @VKHSD
    @VKHSD Pƙed rokem

    Super glue eating livestream when? How is this real.

  • @G.A.C_Preserve
    @G.A.C_Preserve Pƙed 2 lety +1

    0:27 because the intellectual who recreate it said that it was correct

  • @khalidmuntasirsawad2598
    @khalidmuntasirsawad2598 Pƙed 2 lety

    i dont want to do calculus anymore :(

  • @chow4444
    @chow4444 Pƙed rokem

    I imagined that could an adult doing calculus

  • @unsearchablethings8167
    @unsearchablethings8167 Pƙed 2 lety +1

    Ah man, a proof? Do I have to?

  • @Wmann
    @Wmann Pƙed rokem

    “If we come here,”

  • @kaishahadzami238
    @kaishahadzami238 Pƙed rokem

    Where's the pokeball?

  • @kobethebeefinmathworld953
    @kobethebeefinmathworld953 Pƙed 2 lety +5

    "Adult Calculus" (Baby Real Analysis)

    • @blackpenredpen
      @blackpenredpen  Pƙed 2 lety +2

      😂

    • @PhilipHart
      @PhilipHart Pƙed 2 lety

      Isn't this easier than Baby Rudin? I would have thought it's Baby Baby Real Analysis.

  • @shishirkaphle2252
    @shishirkaphle2252 Pƙed rokem

    As a beginner highschooler
    Why is density there ?😂

  • @leonardobarrera2816
    @leonardobarrera2816 Pƙed 2 lety +1

    Wow, you can do class of children, I can’t with myself xd
    That thing of: ‘’now we are adults’’ is like very angry, please don’t do that

  • @JakubS
    @JakubS Pƙed 2 lety

    i don't understand this method

  • @user-mr9hp3ot6s
    @user-mr9hp3ot6s Pƙed 2 lety

    è€ćžˆæ‚šæ˜Żć°æčŸäșșć—ïŒŸæ˜ŻćŠèź€èŻ†éœéœ‡ćź‡è€ćžˆïŒŸ