The True Meaning of Schrödinger's Equation

Sdílet
Vložit
  • čas přidán 11. 05. 2024
  • Schrödinger's equation governs the behavior of tiny quantum particles by treating them as wave functions. But is Schrödinger's equation actually a wave equation? Maybe not.
    Check out Arvin Ash's video:
    • Everything, Yes, EVERY...
    ________________________________
    VIDEO ANNOTATIONS/CARDS
    Heat Flow with a Thermal Camera:
    • You CANNOT See Through...
    Atomic Orbitals, Visualized:
    • Atomic Orbitals, Visua...
    Geocentrism:
    • How can Planets be in ...
    ________________________________
    RELATED CZcams VIDEOS
    Up and Atom on Schrödinger's Equation:
    • What is The Schrödinge...
    Physics with Eugene on Schrödinger's Equation:
    • Schrodinger's Equation
    Faculty of Khan derives Wave Equation:
    • Introducing the Wave E...
    ________________________________
    SUPPORT THE SCIENCE ASYLUM
    Patreon:
    / scienceasylum
    CZcams Membership:
    / @scienceasylum
    Advanced Theoretical Physics (Paperback):
    www.lulu.com/shop/nick-lucid/a...
    Advanced Theoretical Physics (eBook):
    gumroad.com/l/ubSc
    Merchandise:
    shop.spreadshirt.com/scienceas...
    ________________________________
    HUGE THANK YOU TO THESE SUPPORTERS
    Asylum Counselors:
    Bosphorus
    Asylum Orderlies:
    Dhruv Singhal, Medec Hurtz
    Einsteinium Crazies:
    Benjamin Sharef, Eoin O'Sullivan, Ilya Yashin, Jonathan Lima, Kevin Flanagan, Sean K
    Plutonium Crazies:
    Al Davis, Compuart, Ellis Hall, Fabio Manzini, Kevin MacLean, Rick Myers, Vid Icarus
    Platinum Crazies:
    Bart Barry, Christopher Bennett, Clayton Bruckert, David Johnston, Jonathan Reel, Joshua Gallagher, Marino Hernandez, Mikayla Eckel Cifrese, Mr. Orn Jonasar, Olga Cooperman, Thomas V Lohmeier, William Hutchison
    ________________________________
    OTHER SOURCES
    www.etymonline.com/search?q=wave
    www.merriam-webster.com/dicti...
    galileo.phys.virginia.edu/cla...
    www.animations.physics.unsw.e...
    eng-web1.eng.famu.fsu.edu/~do...
    www.hep.phy.cam.ac.uk/theory/...
    arxiv.org/abs/1504.01417
    iopscience.iop.org/article/10...
    math.mit.edu/~jorloff/suppnot...
    ________________________________
    STUDIO GEAR AFFILIATE LINKS
    Camera amzn.to/3RfgOCk
    Portable Recorder amzn.to/3HkQoue
    Overhead Table Mount amzn.to/3HGg7ik
    Microphone Stand amzn.to/3JnoqAQ
    Panel Light amzn.to/3Jl3dHT
    Camera Tripod amzn.to/3kRt3Jk
    Studio Blanket amzn.to/3kTuAhZ
    Microphone Cable amzn.to/3HGwvPZ
    Clamp Mount amzn.to/3HjucRu
    FTC Disclosure: These are affiliate links, which means I may receive a commission for purchases made through my links.
    ________________________________
    LINKS TO COMMENTS
    Orden Just:
    • You CANNOT See Through...
    Stroheim333:
    • How can Planets be in ...
    ________________________________
    TIME CODES
    00:00 Cold Open
    00:24 Viewer Question
    01:02 Strings
    02:41 Wave Equations
    03:42 Where does it come from?
    04:43 Schrödinger's Equation
    05:29 Language is Complicated
    06:28 Arvin Ash Collab
    07:36 Heat Equations
    08:18 Probability Flow
    09:56 Summary
    11:02 My Book
    11:17 Other Quantum Equations
    11:48 Outro
    12:00 Featured Comment
    #quantummechanics #quantumphysics #schrodingerwaveequation

Komentáře • 1,1K

  • @ScienceAsylum
    @ScienceAsylum  Před rokem +139

    Don't forget to check out Arvin Ash's video on the ubiquitous harmonic oscillator: czcams.com/video/BZRv8Nko9XQ/video.html 🤓

    • @LuisAldamiz
      @LuisAldamiz Před rokem +4

      So it's not any coincidence that Arvin's video an yours popped up in my notifications almost simultaneously. I knew it: coincidences do not exist! 🤔

    • @En_theo
      @En_theo Před rokem +3

      It's okay to be a little self-promotional for time to time, Nic :)

    • @PMA65537
      @PMA65537 Před rokem +1

      If I made videos and mentioned Arvin then just for that part of the video I'd be wearing an Arvin-type hat.

    • @ArvinAsh
      @ArvinAsh Před rokem +8

      Thanks for the collab Nick! It was fun. Your video is not only funny and creative, as usual, but also important!

    • @ScienceAsylum
      @ScienceAsylum  Před rokem +4

      @@clmasse Fair point. It would have been more accurate to say "seemingly ubiquitous."

  • @stevenjones8575
    @stevenjones8575 Před rokem +176

    Dang, a flow of probability makes a lot more intuitive sense to me than a wave of probability. Thanks for the awesome video!

    • @ScienceAsylum
      @ScienceAsylum  Před rokem +9

      Glad I could help 🤓

    • @DrDeuteron
      @DrDeuteron Před rokem +5

      It only makes intuitive sense when you ||psi^2|| it...I don't think intuition covers a flow of complex probability amplitude. That gives me an idea.

    • @bozo5632
      @bozo5632 Před rokem

      So, what, probability particles are moving?

    • @DrDeuteron
      @DrDeuteron Před rokem

      @@bozo5632 no, that's (psi*)grad(psi) -(psi)grad(psi*).

    • @UteChewb
      @UteChewb Před rokem +1

      I remember many years ago seeing an article about Josephson junctions. There was a circuit diagram and an arrow that pointed in a direction with a caption "Probability Current". I went, "WHAT?" Then the more I thought about it the cooler it seemed. Now this video completes that for me.

  • @shelley-anneharrisberg7409
    @shelley-anneharrisberg7409 Před rokem +331

    This is the first time I have really understood why the wave equation is written as it is! We did the derivation and how to solve it, but I never fully understood it. You are an epic genius at understanding and relaying physical concepts! The same for the heat and fluid equation and explaining the "flow" of probability in the Schrödinger equation. I am so grateful :)

    • @ScienceAsylum
      @ScienceAsylum  Před rokem +40

      Glad it helped! 🤓

    • @pwinsider007
      @pwinsider007 Před rokem +4

      @@ScienceAsylum orbital is created by assuming position of particle is uncertain and velocity thus energy of particle is certain but what would an orbital look like if it is created by assuming postion of particle is certain and velocity thus energy of particle(energy of orbital) is uncertain?

    • @sardamdar
      @sardamdar Před rokem +5

      Exactly, I always wonder if I'm not listening in classes or the teachers don't teach well.

    • @ToriKo_
      @ToriKo_ Před rokem +9

      This exactly! First time I’ve been introduced to the idea that there are ‘standard’ heat and wave equation, shown what they look like, and shown how the Schrödinger equation fits into that, instead of just falling from the sky

    • @Patrik6920
      @Patrik6920 Před rokem +1

      @@pwinsider007 ..orbitals is a costruct of humans ... it makes it easier to work with just... in reality thers no such things as orbitals..but energy stats...the probability that a higer energy electron is further away from the nucleus is bigger...but its a it all over the place... i see iyt as a rather fundamental misconception thats been passed down in time... the real interesting q is 'Why does waves behave as particles when intersecting' and not 'why does particles behave as waves' (there is no particle...its an illusion)
      thankfully soundwaves behave very simillar and can be used explain it (it make it easier for us sapiens to comprehend it)...let it sink in b4 u answer...

  • @Culando
    @Culando Před rokem +115

    "By the way it's actually a hundred times more complicated than that" seems to be the motto of Quantum Physics. And the collab with Arvin Ash is awesome! I've checked out a number of his videos too.

    • @ScienceAsylum
      @ScienceAsylum  Před rokem +23

      Yeah, I think "By the way it's actually a hundred times more complicated than that" pretty much sums up every explanation of quantum physics.

    • @misterlau5246
      @misterlau5246 Před rokem +2

      The problem is Nick Lucid will have a PhD. And yeah, how can he explain without the fancier stuff?
      Of course it's complicated, or Nick wouldn't have to study a doctorate to be at maximum of his career

  • @devarshnayyar3910
    @devarshnayyar3910 Před rokem +181

    This is the equation we all can understand without understanding it.

    • @Pleasing_view
      @Pleasing_view Před rokem +7

      It's just P.E + K.E for subatomic particles. The Science Asylum is just complicating the notion..

    • @narfwhals7843
      @narfwhals7843 Před rokem +16

      @@Pleasing_view it isn't "just" that. It's what happens when you replace the ideas of classical energy with quantum operators.

    • @Joyexer
      @Joyexer Před rokem +6

      Trust me... You dont. There are whole research branches dedicated to push this equation to its limits...

    • @abhishankpaul
      @abhishankpaul Před rokem +1

      That moment when you understand that QM can be done but not understood

    • @oliviervancantfort5327
      @oliviervancantfort5327 Před rokem +14

      Actually, you can be in a state of understanding it and in a state of not understanding it at the same time... and you will collapse upon examination.

  • @Psychx_
    @Psychx_ Před rokem +49

    I'm from Austria and I'm also a Schrödinger fan. Before the country transitioned to the Euro, the currency was the "Schilling" (read 'sch' in German words as an 'sh' in English, i.e: shilling). The second last iteration of said currency (in the 80's up until the 90's) had Schrödinger and the wave equation on the 1000 bank note. Ofc I had to get one :P
    It contains a portrait of Schrödinger, the formula symbol of the wave equation and a stilized atom on the front and the main university of Vienna and another stilized atom on the back. For anyone who's into collecting old currencies, I can highly recommend getting one. It's an absolute beauty of a bank note.
    As a side note, these cannot be exchanged into Euro at the Austrian national bank anymore, but they become increasingly sought after by collectors. If you keep one for 40 years and have it remain in good condition, it may also serve as a nice investment.

    • @FriedrichHerschel
      @FriedrichHerschel Před rokem +3

      My brother still has a 10 DM bank note, with Gauss on it, for similar reasons. Unlike you, he could exchange it into Euros if he liked.

    • @MassimoAngotzi
      @MassimoAngotzi Před rokem +2

      Underrated comment. 👍

    • @Psychx_
      @Psychx_ Před rokem +4

      @@mal2ksc It's in a superposition of these two states, how fitting :D

    • @Sanntik
      @Sanntik Před rokem

      I’m sorry to say that “I’m a schrodinger fan” is no longer something you can say, given the controversy around him ^^”

    • @Psychx_
      @Psychx_ Před rokem +2

      ​@@Sanntik Aww, some people on YT/Twitter are offended by a dead person :P
      I am not bound by cancel culture and it's irrelevant to me whatever he did in his private life, since it's unrelated to his scientic achievements.

  • @AlecBrady
    @AlecBrady Před rokem +23

    This is great! I learned recently (from 3Blue1Brown, actually) that the Fourier transform originated in Fourier's contribution to solving the heat equation, not the wave equation; so the role of Fourier transforms in QM now makes a lot of sense. Thank you for this!

    • @ScienceAsylum
      @ScienceAsylum  Před rokem +1

      Glad I could help 🙂

    • @renscience
      @renscience Před 5 měsíci +1

      Fourier’s contribution to the 20th and 21st century is so underrated. Even the uncertainty principle is derived from Fourier. Not surprisingly, as oscillators (everything wiggles ….Feynman) is cosine and sine dependent. And more amazingly, it is all a vector space that can also be tied to linear algebra. A soup all pointing to energy density probabilities… nature is truly amazing

  • @joepeach997
    @joepeach997 Před rokem +2

    “Where was I”? My thoughts all through this, and loved every second of it!

  • @ToriKo_
    @ToriKo_ Před rokem +17

    “The wave equation isn’t about wave shapes, it’s about wave motion” 10:05 great line

    • @ScienceAsylum
      @ScienceAsylum  Před rokem +3

      Thanks 🤓

    • @brigittelars5564
      @brigittelars5564 Před rokem +1

      But the geometrics of wave motion is also critically important, it can't be overlooked

  • @tf8896
    @tf8896 Před rokem +39

    Thanks Nick! This semester I’m taking my first proper rigorous QM class! Perfect timing!

  • @Schraiber
    @Schraiber Před rokem +15

    I actually used the analogy between the Schrodinger equations and diffusion equations (which generalize the heat equation) as the key to my PhD thesis, where I applied path integration methods from QM to population genetics problems that are usually described with diffusion equations

    • @vikurtz
      @vikurtz Před rokem +2

      Ooh, has it been published? I'd be interested in reading that

  • @RalphDratman
    @RalphDratman Před rokem +57

    Yes the Schrodinger equation is first order in time, like the heat equation.
    But the i factor, by riotating the time derivative by 90 degrees, makes the result very different.
    In fact, if you split psi into real and imaginary parts, you can write two differential equations, then combine them to finally get a single differential equation that is second order in time.
    That is, if I remember correctly.

    • @yvespillot1245
      @yvespillot1245 Před rokem +1

      Indeed, you can remove time dependance in schrodinger equation and get the time independent version of schrodinger!

    • @Camptonweat
      @Camptonweat Před rokem +4

      Yes, I recall the complex diffusion factor is why "probability flow" doesn't have the same broad characteristics as temp flow and can look "wave-y".

    • @e.b.1115
      @e.b.1115 Před rokem +1

      This. I recall reconfiguring the Schrodinger equation to be second order in time, and the i factor was important

    • @markcarey67
      @markcarey67 Před rokem

      It depends what the "i"means though - there is an interpretation where time is a clock which is a cycle so anything that describes these kinds of processes at this fundamental level involves clocks diffusing.

    • @nauy
      @nauy Před rokem +2

      Well, Dirac’s version with second derivative of time (relativistic) got him the Nobel Prize.

  • @astradrian
    @astradrian Před rokem +46

    First-year physics undergrad here and I was just studying these equations! Love your videos Nick; you're one of the reasons I'm studying Physics today ;)

    • @ScienceAsylum
      @ScienceAsylum  Před rokem +15

      Thanks for sharing. I'm glad I could inspire you 🙂

    • @ayushaggarwal906
      @ayushaggarwal906 Před rokem +3

      After 4 months I will be studying the same equation.

  • @macronencer
    @macronencer Před rokem +10

    You are brilliant, Nick! Almost every time I watch one of your videos I either learn something new or gain a new perspective. This was really helpful - thanks!

  • @Nexictus
    @Nexictus Před rokem +21

    I like how he is questioning everything just to explain stuff to us.

    • @anthonyfaiell3263
      @anthonyfaiell3263 Před rokem

      Richard Feynman, one of the greatest physicists in the last century believed that the key to truly learning and understanding a concept was to be able to explain it coherently to others in laymen terms.
      .
      And just on a general level, intelligent people don't just "have opinions" on things without at least trying to understand them inside and out. So it's likely this was a lot of his actual thought process on working through this. Also, deriving an answer through logic will be much more likely to stick in your memory than deriving an answer through memorization.
      .
      In other words, this isn't just for us. He is likely sharing his actual thought process on the matter.

  • @CT-pi2gl
    @CT-pi2gl Před rokem +8

    Man, what a fantastic summary of some of the main relationships in physics. That free body diagram of the string section related to the equation terms was particularly clarifying.

  • @kt420ish
    @kt420ish Před rokem +4

    Awesome video! Love the colab with Arvin Ash. Both of you guys are amazing at what you do and we as viewers appreciate it

  • @dimzen5406
    @dimzen5406 Před rokem +3

    I haven't watched you channel for years, and now overwhelmed by all - level of disputed problem, simplisty of explanation, and even an artistic level

    • @ScienceAsylum
      @ScienceAsylum  Před rokem +2

      Thanks! I've tried to improve a lot over the years.

  • @joetedescoyou
    @joetedescoyou Před rokem +5

    Thanks for your commitment to lucidity in science.

  • @Samien
    @Samien Před rokem +4

    Nice cameo 😎 I have been following both channels for years 👍🏻 excellent as always Nick ❤

  • @scottfuller9623
    @scottfuller9623 Před rokem +1

    Loved your way of explaining this! Made something very complex seem shockingly simple.

  • @alexandrebatalha7253
    @alexandrebatalha7253 Před rokem +7

    I LOVE your videos, Nick! I'm a physics teacher in high school here in Brazil and always learn and have fun with you! Thanks a lot!! Hugs

  • @jimmypk1353
    @jimmypk1353 Před rokem +3

    Cannot tell you how delighted I am to see the two of you collaborate like this. I took me by surprise. You guys made my day. LOVE YA BOTH! ❤

  • @vincentwalker2081
    @vincentwalker2081 Před rokem +2

    Actually, I watched Arvin last night, February 2, 2023. Thank you for putting it all together.

  • @freezinfire
    @freezinfire Před rokem +3

    It's been so long it seems every time you post a video. Great work as always sir

  • @SergTTL
    @SergTTL Před rokem +11

    That boxy wave radiates some old school vibes. A signal from a distant past.

    • @cdixonweekes
      @cdixonweekes Před rokem +1

      Here's the comment I was looking for.

  • @mathadventuress
    @mathadventuress Před rokem +3

    I just took a course on schrodingers equation so this was a treat to watch.

    • @ScienceAsylum
      @ScienceAsylum  Před rokem +1

      Nice! 👍 I hope this was some good reinforcement.

  • @jamescomstock7299
    @jamescomstock7299 Před 11 měsíci +1

    Only rarely do I learn something that blows up my mind and lets me emerge with a new, completely altered understanding of our world. This video is one those rare moments and is amazingly the second time you've done that for me. Keep up the amazing job educating us about science!

  • @sarthakthememegod
    @sarthakthememegod Před rokem +32

    Awesome Video as Always Bro!
    You Make Science so Interesting
    Thanks a Lot
    Appreciate it a LOT🔥❤️

  • @punditgi
    @punditgi Před rokem +6

    Nick always manages to make these gnarly topics extremely lucid! 😆

  • @cowgomoo444
    @cowgomoo444 Před rokem +3

    Interesting video. It did always feel weird to me that it wasn’t a wave equation. But I am slightly confused. Wasn’t Schrödinger motivated by De Broglie’s hypothesis? Namely that electrons were standing waves around the nucleus. That all particles, not just photons, could exhibit particle wave duality. Wasn’t this also used to explain the double slit experiment? I understand that formally it resembles the heat equation, not the wave equation - but wasn’t the whole point to find waves? Even if they are “probability waves” for lack of a better term.
    I mean I just started studying quantum physics in my undergrad, so I really have very little idea what’s going on.

    • @ScienceAsylum
      @ScienceAsylum  Před rokem +1

      The "i" in the coefficient on the time side of the equation makes things a bit more complicated (which I glossed over). It allows for rotations in the complex plane and rotations can be viewed as waves if you take a cross-section... but that's two _extra_ levels of abstraction.

  • @heavierthanlight7173
    @heavierthanlight7173 Před rokem +2

    Came here from a reference from Arvin... already subscribed long long ago for both. Great teamwork!

  • @araujo_88
    @araujo_88 Před rokem +3

    Excelent video about the wave equation. Would have helped me a lot when I was taking differential equations lectures in undergrad school.

  • @hinglish7813
    @hinglish7813 Před rokem +8

    I finally comprehend why the wave equation is written the way it is for the first time. I never really understood the derivation or how to solve it, though we did it. You have incredible aptitude for grasping and communicating physical ideas! The same is true for describing how the probability "flow" in the Schrödinger equation and the heat and fluid equation. I'm so appreciative.

  • @carpdog42
    @carpdog42 Před rokem +4

    I saw both your video and Arvin Ashe's video and decided to watch this first, as soon as you said "restorative force" I suspected there was coordination based on the title of his.

  • @wefinishthisnow3883
    @wefinishthisnow3883 Před rokem +1

    Saw you on Arvin's site before seeing your latest upload! Was a nice surprise to see you appear!

  • @thechosenone5644
    @thechosenone5644 Před 5 měsíci +1

    It took rewatching some parts but the explanations here were great.

  • @ImDemonAlchemist
    @ImDemonAlchemist Před rokem +13

    This channel remains absolutely phenomenal. Great presentaion, interesting and well covered subjects, and entertaining delivery.

  • @dmiller4511
    @dmiller4511 Před rokem +5

    "Curviness determines acceleration"
    "Probability flows through space"
    Love these

    • @brigittelars5564
      @brigittelars5564 Před rokem

      Just ask this question.. "is probability a physical object? If no then how and where is it flowing? In our heads or in physical cosmos? 😀

    • @dmiller4511
      @dmiller4511 Před rokem

      @@brigittelars5564 Love this. Probability maybe the first step towards a definition of consciousness? Thank you!

  • @EnginAtik
    @EnginAtik Před rokem +1

    I've been watching Arvin's and Nick's videos back and forth until Nick's video helped me reach a steady-state.

  • @sirtajali5841
    @sirtajali5841 Před rokem +1

    Thanku 1000 time u have no idea how much your vedios help me. When professors explain schrödinger equation i remain only scratching my had. After watching your vedios my efficiency increase 200%

  • @daedalus25
    @daedalus25 Před rokem +6

    As someone with a degree in physics, it always makes me smile when I learn something from the Science Asylum. My undergraduate wave mechanics professor never explained what the Schroedinger wave equation represented. It was just, here it is, now let's do some calculations.

    • @ScienceAsylum
      @ScienceAsylum  Před rokem +2

      *"It was just, here it is, now let's do some calculations."*
      Yeah, that's pretty common.

    • @jacobsvickers3945
      @jacobsvickers3945 Před rokem

      Same. Why don't they just say: by the way mathematical abstraction doesn't always translate so we started using probabilities.... Instead they keep it esoteric like it's unbelievably complex and of course it's complex but we already knew that didn't we! It doesn't make Maxwell's equations not true in fact Maxwell's equations account for almost all phenomena except gravity. This is why I decided not to pursue my post-graduate degree in physics seems like a waste to me...

  • @coloradoing9172
    @coloradoing9172 Před rokem +5

    Love your videos, Nick! Keep it up.

  • @briananderson687
    @briananderson687 Před rokem +1

    That may have been your best yet thank you!

  • @gertjan1710
    @gertjan1710 Před rokem +4

    Respect for tackling this.
    A flow equation instead of a wave equation.
    Though when you take a time independent solution on a constant potential energy term ,
    you'll get a 'standing (co)sine wave'
    Which is probably where the confusion originates.
    As these simpler solutions are always the first ones used in a classroom environment

  • @luudest
    @luudest Před rokem +9

    Thanks for the clarification! I found the term ‚wave equation’ always very confusing: in High School I thought an electromagnetic wave propagates like a water wave through space.

    • @anthonyfaiell3263
      @anthonyfaiell3263 Před rokem +2

      Ah, education. They don't care what you know/think as long as you can regurgitate the exact list of things they fed to you.

    • @benjamink2398
      @benjamink2398 Před rokem +3

      I mean.... kinda? It does propagate. Through space. And something is waving. Just happens to be the EM field instead of material water

  • @luudest
    @luudest Před rokem +3

    An episode about the History of the Schrödinger Equation would be great!

  • @devluz
    @devluz Před rokem +2

    Great video. I am fascinated by wave & heat equations for a long time but haven't look at it from this angle yet. They are super easy to understand using grid based simulations. One grid for the wave height (concavity in the video) and one for velocity. All the scary looking derivatives just turn into simple subtraction. Totally worth a look into it.

  • @esquilax5563
    @esquilax5563 Před rokem +2

    I thought I understood this stuff pretty well, but your videos consistently blow my mind!

  • @digitaldave1576
    @digitaldave1576 Před rokem +3

    Keep up the good work, I love your videos

  • @seanspartan2023
    @seanspartan2023 Před rokem +18

    I think it all comes down to semantics and something you mentioned on your earlier videos. Namely that quantum particles don't sometimes behave as particles and sometimes as waves, they always behave as particle-waves 100% of the time, i.e. they're something different entirely. It's a shame concepts in physics get mislabeled and the label sticks, but it's a learning opportunity and that's why I appreciate these videos.

    • @nybble
      @nybble Před rokem +8

      As Feynman once said in one of his lectures:
      "They do not behave like particles! They do not behave like waves! They behave in their own inimitable way!"

    • @picobarco4407
      @picobarco4407 Před rokem

      @@nybble Yes, I saw that video of Feynmann, it was really cool.

  • @combcomclrlsr
    @combcomclrlsr Před rokem +1

    Okay. This is like the best explanation I've seen.

  • @absolute___zero
    @absolute___zero Před rokem +1

    wow, so many patterns in such a simple equation, you're my hero!

  • @1002chrisc
    @1002chrisc Před rokem +3

    I love the description of the difference between the broad equation types. Personally, I think of the heat equation in terms of diffusion (mass transfer, but conduction in the heat model). It represents movement across a gradient compared to the beautifully explained wave function's restoration from concavity.

  • @fernandodiazmarin250
    @fernandodiazmarin250 Před 10 měsíci +3

    I've always thought the "wave" aspect of the Schrödinger was contained inside its use of imaginary and complex numbers, as these are pretty useful for describe some "cyclic" behaviors like the rotational and harmonic phenomena 🤔

  • @romanieo
    @romanieo Před rokem +2

    Sweet Lord this was great and extremely helpful Nick. You and AA are connecting the disparate dots into a cohesive whole.

  • @nikolatezzla3894
    @nikolatezzla3894 Před rokem +1

    Man...that's really a perfect timing...I have engineering physics exam Tomorrow and I have searched many videos....but your video made me a clear mind of seeing equations 🙂🙂

  • @MurseSamson
    @MurseSamson Před rokem +4

    You know, I actually got a lot from this video. Thank you Nick for clarifying the perspective of the *wave* and *flow* itself.
    Arvin also has some great videos and I've watched nearly all of those too. Thank you both very much for making these videos! ♥️🙏
    I look forward to reading your *Fine Structure* education!! Thank you so much!

  • @darkwaveatheist
    @darkwaveatheist Před rokem +3

    Oh good. A Tuesday rabbit hole to go down with both you and Arvin.

  • @iamjimgroth
    @iamjimgroth Před rokem +2

    It's huge! The book that is. Looking forward to having time to read it! 😊

  • @mds1274
    @mds1274 Před rokem +2

    This video was excellent. I immediately went to look up the Black-Scholes equation as I had remembered it had been derived from the Brownian heat equations. In that equation (at least for European options) we see a first order term for time and a second order term for motion.
    This video has revealed a relationship that I had never connected before. It is like a curtain has been lifted. Thank you!

    • @thedeemon
      @thedeemon Před rokem +1

      This vid completely ignores the fact we're dealing with complex numbers here, and the way curviness in complex phase influences amplitude makes it very different from ordinary heat equation where all numbers are real, not complex.

  • @Zagneek
    @Zagneek Před rokem +3

    I struggled with Science at school finding it extremely difficult to grasp.
    However 40 odd years later I’m finding your vids really fascinating - I won’t pretend I understand the detail but the way you put things across it certainly makes me grasp the overall concepts so cheers for that 😊
    One final thought and it might be a daft question but I will ask it anyway:
    How do we know a particle can be in more than one place at once until we measure it - as the act of measurement will fix it to a particular place, so thefore we can never observe these multiple states? 🤔💭

  • @AlipashaSadri
    @AlipashaSadri Před rokem +4

    at 1:50 , *in general* the horizontal component of the tensions does NOT remain the same after applying the downward force. To keep it the same, you need a very very *soft* string (I am assuming linear-elastic spring behavior) and a very shallow dip (so that cos of the angle is very close to 1)

  •  Před rokem +1

    The best explanation of the wave equation ever seen. This intuitive approach to the meaning of the second derivatives with respect to time (acceleration) and space (curvature) is needed to a full understanding of the equation, but almost never explained.
    You are the best in clarifying physics equations!!

    • @ScienceAsylum
      @ScienceAsylum  Před 11 měsíci

      Thanks! Honestly, I (partly) regret putting it inside a video about Schrodinger's equation. It should have been its own 5 minute video.

    •  Před 11 měsíci

      @@ScienceAsylum But you can make another video about waves and repeat it with other things. I suppose that is hard to find a different subject of physics every week. Doesn't matter to make several videos about the same subject. It is usually made with special relativity, but it can be made with everything.

  • @BlueGiant69202
    @BlueGiant69202 Před rokem +1

    Excellent video! The way you brought Arvin Ash in was very smooth! Is this the start of a beautiful dynamics duo?
    While I was listening, I was reminded of John N. Shive's 1982 book , "Similarities in Physics" and Nelson Stochastic Mechanics.

  • @pesimeon
    @pesimeon Před rokem +5

    Great! This video leads nicely into a discussion of the epistemic vs. ontic nature of the wavefunction.

  • @Tore_Lund
    @Tore_Lund Před rokem +3

    3 equations within the first minute! Love it, this is turning into PBS Spacetime without the beard.

  • @keepmoving1185
    @keepmoving1185 Před rokem +2

    Great work as always my friend

  • @randyscott709
    @randyscott709 Před rokem +1

    Thanks for again making us stretch!

  • @samarthpatil2053
    @samarthpatil2053 Před rokem +3

    Very awsm bro
    Love from India :'))

  • @TheHumanHades
    @TheHumanHades Před rokem +3

    That was really very exciting and eye-opening. Thanks Nick 😃

  • @mikeglover6356
    @mikeglover6356 Před rokem +2

    OMG... If I had instructors in my engineering program who had a quantum bit of the talent to explain things so clearly... I would've saved so much head scratching and confusion. Brilliant overview!! Thanks...

  • @JustMe-vz3wd
    @JustMe-vz3wd Před rokem +1

    Great video explainer. Still the best youtube science channel.

  • @gretchenchristophel1169
    @gretchenchristophel1169 Před rokem +7

    I love your videos...even if I only get half of what you're talking about 🤣 Yet...at the end of your videos I feel like "I got this". Feel smart for about 20 minutes 😂 Seriously...I love physics and even though I could never be a physicist there's just something about the science that tweaks my brain. Thanks for making a tough (for me) subject enjoyable.

  • @lorigulfnoldor2162
    @lorigulfnoldor2162 Před rokem +3

    Oh, Nick, I once thought of the very same question - "Is this a dissipation equation?" - and asked a physicist about it. The physicist answered that it is not "quite" heat equation because of the imaginary one, the "i"! ("The Imaginary One", now that's something right out from a fantasy book... I mean "imaginary unit", sorry, English isn't my native language). This changes it from dissipation equation to something quite different because every derivative "turns it 90 degrees" in this weird imaginary space. Could you elaborate on this a little? Does it make big enough a difference for it NOT to be a dissipation equation? Or does this only mean that dissipation itself is weird?

    • @ScienceAsylum
      @ScienceAsylum  Před rokem +1

      I'll admit the "i" in the coefficient muddles things. You could argue that Schrodinger's equation is really it's own thing.

  • @tommywhite3545
    @tommywhite3545 Před rokem +2

    To me the videos you make with humor and/or describing the equations (math) with simple words, instead of leaving them out completely, are your best ones.👍
    (I think most people just want to know what the equations come to anyway, without studying mathematics.)

  • @JaskoonerSingh
    @JaskoonerSingh Před rokem +1

    One of your best vids yet.

  • @sslelgamal5206
    @sslelgamal5206 Před rokem +4

    I loved it, thinking about Schrodinger's equation as heat dissipation equation was fun! 👌👌👍👍
    Well I think the comment about three types of equations in classical physics is correct if we change the "type" with 'category"! Most of physics equations are of order 2 and linear with constant coefficients mostly, when working with second order differential equations, we only have hyperbolic, parabolic and elliptic variations (discarding the degenerate cases).

    • @obi6822
      @obi6822 Před rokem +1

      The classification "elliptic, parabolic, hyperbolic" is complete only in 2 spatial dimensions.

  • @ObsessiveClarity
    @ObsessiveClarity Před rokem +4

    This is awesome! The only thing swept under the rug is that Ψ isn't a pdf, but a complex number, and |Ψ|^2 is a pdf. So it's not probability that is flowing but something very closely related. An intuitive explanation of the meaning of Ψ would be incredible

    • @ScienceAsylum
      @ScienceAsylum  Před rokem +3

      Unfortunately, we don't have a physical interpretation of Ψ because we've never observed it directly.

    • @TooSlowTube
      @TooSlowTube Před rokem +1

      @@ScienceAsylum Are there any other links between quantum mechanics and thermodynamics?
      They both seem to be describing something statistical - lots of little tiny things, running around and interacting with each other on a scale that's too small to follow the details, so we are only really aware of a summary (averages and distributions) of what happens, not so much the details of individual interactions.

    • @richardspectacular5327
      @richardspectacular5327 Před rokem +2

      @@TooSlowTube look into statistical mechanics and quantum decoherence. Have fun going down the rabbit hole, see you on the other side!

    • @brigittelars5564
      @brigittelars5564 Před rokem

      @@ScienceAsylum so in place of the real physical thing, humans just plug in probability which is not also a physical thing, right?

  • @grapy83
    @grapy83 Před rokem +2

    Excellent video... As usual. Thank You!

  • @moreaufamily437
    @moreaufamily437 Před rokem +2

    PDE's a favorite topic of mine. Very well done!

  • @WindsorMason
    @WindsorMason Před rokem +3

    The square wave shown as a "Boxxy wave" is hilarious.

  • @anon2497
    @anon2497 Před rokem +3

    Since I can't give two thumbs up for your second order content, I leave this comment in its place.
    Two thumbs up man! Keep making this amazing content!
    You are one of my favorite science communicators, and easily one of the most entertaining while also maintaining an incredible fidelity!
    (Ps: I only said "one of" because I don't want the other kids to get jealous, but between you and me? We know who my favorite actually is, right? Wink wink...)

  • @reinhardtristaneugen9113

    Zur Heterogenität dessen, was man nomine so in der Quantenphysik vorfindet:
    Die Gleichung H Psi (r) = E Psi ( r ) ( das Psi für die Wellenfunktion... ) ist in dieser Form der Schrödinger-Gleichung eine Eigenwertgleichung, wobei ihre Lösungen also Eigenfunktionen zum Eigenwert E ( wer nicht weiß, was das ist, der sich sehe sich die Hauptquantenzahl < n > an... ) sind. Weil die Eigenwertsgleichung meistens nur durch diskrete Eigenwerte in Abhängigkeit der Randbedingungen erfüllt wird, heißen diese quantisiert als Antonym zu kontinuierlich.
    Ich finde aber das Problem ist, dass, wenn die Leute fragen < quantisiert > was'n das? ...die Antwort < es sind infinitesimale Pakete dessen, was das jeweilige Quant ist, einem zwar Ruhe bringt... ( ...die Leute hauen ab... ...sie hauen aber auch bei🖕ab ), aber keine abstraktionsorientierte Antwort sein kann, weil die Leute autosuggestiv wieder an Teilchen denken und nicht von dieser Anschauung aus dem Mesokosmos wegkommen.. ...Rettung vor dem, was die Sprache der Physik ist, bringt einem eigentlich nur der mathematische Term als Hilfsmittel der Beschreibung aus dem Reservoir, was die Mathematik abstrahiert aufgespannt hat... als letzte Zuflucht für die, die da die Schöpfung so gut wie möglich sehen wollen... ...ich will hier so schnell wie möglich wegkommen!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    Le p'tit Daniel🐕🐕🐕🏒🏒🏒

  • @awolgeordie9926
    @awolgeordie9926 Před rokem +2

    Outstanding. As always.

  • @Mysoi123
    @Mysoi123 Před rokem +7

    Turn out seeing Arvin and Science Asylum both uploaded at the same time is not a coincidence! 😭😭😂

  • @hakanegne
    @hakanegne Před rokem +3

    in my opinion, the term of "wave-particle duality" is wrong. The right term must be "vortex-particle duality"..

  • @matthewjackman8410
    @matthewjackman8410 Před rokem +1

    6:18
    Putting Boxxy in the square wave is a very old school internet reference that I am all for!

  • @greje656
    @greje656 Před rokem +2

    gold gold gold. Thank you for this amazing content!

  • @vfa.vinicius
    @vfa.vinicius Před rokem +4

    If the Schrodinger equation is a diffusion equation, then it has an imaginary diffusion coefficient, which in turn makes it weird to call it a "diffusion equation". I mean, the "i" in the Schrodinger equation makes a big difference... Because of the "i", the solutions must be complex, and the equation has U(1) phase invariance, which leads to conservation of probability in QM. None of that is true for the heat equation with a real diffusion coefficient, because there's no phase invariance and no conserved quantity. As similar as these two equations may seem, the "i" introduces some properties to the Schrodinger equation that are just not present in the diffusion equation.

    • @ScienceAsylum
      @ScienceAsylum  Před rokem

      Sure, it might be better just to label it it's own unique thing 🤷‍♂️

  • @kentjohnduga6833
    @kentjohnduga6833 Před rokem +3

    This is a great intro to understanding the Schrodinger Equation! And this is also what my research professor taught me on how to view the equation: you can recast the Schrodinger Equation such that it can be explicitly shown that it is indeed a continuity (or a flow) equation in which Probability Density is conserved and a so called "Probability Current Density" carries the flow. Think of it as if there is no current, then the probability won't change; similar to when there is no flow of fluid, there will be no change in the accumulation of fluid. After all, the Schrodinger Equation enshrines the Unitarity Principle.
    Anyway, my comment I guess is about the notion that Schrodinger Equation is a derived equation. Here, it is said that it was derived from Conservation of Energy. But my Prof always says (I am in his Quantum Foundations theory group btw) that Schrodinger Equation cannot be derived. It is a conclusion of a concoction of several experiments and postulates. It just so happen that the Schrodinger Equation fits snugly in our current view of Physics such that one could say that it could be derived from say the Conservation of Energy. But with the same logic, Schrodinger Equation could also be "derived" from a proper Lagrangian Density and from the Hamilton-Jacobi Equation, among others, which stems from the fact that there is a symmetric transformation that gives rise to a conservative quantity. Hence, you cannot pin-point where it really came from. He always corrects me: "You cannot derive the Schrodinger Equation: it is a result of many experiments trying to describe our weird nature."
    Still this is a great video and I learned a lot! Thank you!

  • @corsaircaruso471
    @corsaircaruso471 Před rokem +1

    This is wonderful. I’m a Doctor of Music with only 12 or so hours of post-secondary education in STEM in my entire higher education, but I was able to follow the drive of this and the significance of the difference between a Wave Equation and a (modified) Heat Equation. Thinking of Probability density as flowing from standing wave to standing standing wave, the shape of the standing waves making up the orbitals now makes much more sense to me.

  • @Kaiju3301
    @Kaiju3301 Před rokem +2

    Don’t be ashamed of plugging your book, it’s a damn good one. I’ve been working through it for fun in my free time which is a lot more than I can say about my copy of Jackson’s e&m book.

  • @itskelvinn
    @itskelvinn Před rokem +4

    Everyone remember that it’s ok to be a little crazy

  • @thedeemon
    @thedeemon Před rokem +3

    But it does relate "curviness" (in complex phase) to oscillation! The stronger WF spirals in complex plane, the faster its amplitude changes, the faster it "moves" through space. And for free particles this function does look like a wave with all the wavy properties. Nice visualisation here: czcams.com/video/LZie2QC5Jbc/video.html

  • @deeperblueofficial
    @deeperblueofficial Před rokem +1

    Props for having Arvin on. I'm a hard guy to make laugh, but this time your law of conversation bit broke me.

  • @DeusKDuo
    @DeusKDuo Před rokem +1

    Yes i will check out Arvin's video after.

  • @john-or9cf
    @john-or9cf Před rokem +3

    Somehow my highly paid professors half a century ago failed to make this as clear as you have…🤓

  • @yvespillot1245
    @yvespillot1245 Před rokem +3

    Technically, the real and imaginary parts of the waves function are waving and behave like waves. So isn't schrodinger something more in between? Otherwise very nice video about wave equations, it really raised my intuition level

    • @ScienceAsylum
      @ScienceAsylum  Před rokem +1

      I'll admit the "i" in the coefficient muddles things. You could argue that Schrodinger's equation is really it's own thing. (But yeah, the Schrodinger stuff was just a way to talk about the wave equation without boring people. This video is about the wave equation.)

  • @AnonymousAlcoholic772
    @AnonymousAlcoholic772 Před rokem +1

    Probably your best episode.