Ali Ghodsi, Lec 1: Principal Component Analysis

Sdílet
Vložit
  • čas přidán 22. 01. 2017
  • Ali Ghodsi's lecture on January 5, 2017 for STAT 442/842: Classification, held at the University of Waterloo.
    Introduction to dimensionality reduction via principal component analysis (PCA). Mathematical framework of PCA optimization problem.

Komentáře • 165

  • @muhammadsarimmehdi
    @muhammadsarimmehdi Před 4 lety +67

    I seriously hope he teaches a lot more machine learning and those lectures get published here. He is the only teacher I found who actually dives into the math behind machine learning.

    • @logicboard7746
      @logicboard7746 Před 3 lety

      Agreed

    • @alizain16
      @alizain16 Před 2 lety

      Tou directly Statistics k professors k lecture bhi le sakty ho.

    • @ElKora1998
      @ElKora1998 Před rokem

      This guy owns Databricks now, the biggest ai start up in the world. He isn’t coming back anytime soon sadly 😂

    • @andrewmills7292
      @andrewmills7292 Před rokem +2

      @@ElKora1998 Not the same person

    • @ElKora1998
      @ElKora1998 Před rokem

      @@andrewmills7292 you sure? He looks identical!

  • @rizwanmuhammad6468
    @rizwanmuhammad6468 Před 3 lety +4

    He is certainly at a level that makes you understand. Best teacher. No show off , no hand waving. Genuine teacher. Goal is to teach . Thanks you thank you

  • @andresrossi9
    @andresrossi9 Před 3 lety +6

    This professor is amazing. I'm italian so it's more difficult to follow a lesson in english than in my language. Well, it was much much easier to understand PCA here for me than in any other PCA lesson or paper in italian. And not only, but he gave a more rigorous explanation too! Outstanding, really...

  • @pantelispapageorgiou4519
    @pantelispapageorgiou4519 Před 3 lety +6

    No words to describe the greatness of this professor!

  • @joshi98kishan
    @joshi98kishan Před 17 dny

    Thank you professor. This lecture explains exactly what I was looking for - why principal components are the eigenvectors of the sample covariance matrix.

  • @anirudhthatipelli8765
    @anirudhthatipelli8765 Před rokem +1

    Thanks, this is by far the most detailed explanations of PCA

  • @YouUndeground
    @YouUndeground Před 4 lety +1

    This is the best video about this subject, including the math behind it, that I've found so far.

  • @justiceforall2580
    @justiceforall2580 Před 6 lety +5

    thank you so much! I tried to see the same topic in other videos and was impossible to understand, this is so clear, ordered and intuitively explain, awesome lecturer!

  • @shashanksagarjha2807
    @shashanksagarjha2807 Před 5 lety +30

    If you were to take my opinion, his videos are best one on ml and deep learning on youtube

    • @VahidOnTheMove
      @VahidOnTheMove Před 5 lety +7

      I agree. Watch 21:00. The student repating the answer is the eigen value and the eignen vector, and the intructor says Ok this is correct but why!?
      In most videos on youtube I have seen, people who pretend to be expert do not know (or do not say) the logic behind their claims.

    • @muratcan__22
      @muratcan__22 Před 5 lety

      @@VahidOnTheMove exactly

    • @nazhou7073
      @nazhou7073 Před 4 lety

      I agree!

  • @xuerobert5336
    @xuerobert5336 Před 6 lety

    This series of videos are so great!​

  • @vamsikrishnakodumurumeesal1324

    By far, the best video on PCA

  • @ayushmittal1287
    @ayushmittal1287 Před 2 lety

    Teachers like him make more people fall in love with the topic.

  • @user-se3zz1pn7m
    @user-se3zz1pn7m Před 3 lety

    This is the best pca explanation I've ever seen!! 👍👍

  • @ferensao
    @ferensao Před 4 lety

    This is a great tutorial video, I could grasp the idea behind PCA with easy and clear thoughts.

  • @sudn3682
    @sudn3682 Před 5 lety

    Man, this is pure gold!!

  • @MoAlian
    @MoAlian Před 7 lety +71

    I'd won a Fields medal if I had a professor like this guy in my undergrad.

    • @crazyme1266
      @crazyme1266 Před 5 lety +4

      i think you can do that right now... age is just a number when it comes to learning and creating :D

    • @pubudukumarage3545
      @pubudukumarage3545 Před 5 lety +5

      Crazy || ME :) only if you are not older than 40...fields medal is given for

    • @crazyme1266
      @crazyme1266 Před 5 lety +1

      @@pubudukumarage3545 oh thanks for the information.... I didn't knew that.... Guess I really am kinda crazy huh?? XD

    • @slowcummer
      @slowcummer Před 3 lety

      Yeah, a Garfield the cat medal I'm sure you can win. Just give him Lasagne.

    • @godfreypigott
      @godfreypigott Před 3 lety

      Clearly you would not have won a medal for your English ability.

  • @srishtibhardwaj400
    @srishtibhardwaj400 Před 6 lety +4

    That was an amazing lecture Sir! Thank you!

  • @muratcan__22
    @muratcan__22 Před 5 lety +1

    everything is explained crystal clear. thanks!

  • @usf5914
    @usf5914 Před 4 lety

    know we see teacher with clear and open mind

  • @rbr951
    @rbr951 Před 6 lety +1

    Wonderful lecture thats both intutive as well as mathematically excellent.

  • @alpinebutterfly8710
    @alpinebutterfly8710 Před 2 lety

    This lecture is amazing, your student are extremely lucky ...

  • @najme9315
    @najme9315 Před 2 lety

    Iranian Professors are fantastic! and Prof. Ali Ghodsi is one of them

  • @streeetwall3824
    @streeetwall3824 Před 6 lety

    Thank you prof Ghodsi, very helpful

  • @fish-nature-lover
    @fish-nature-lover Před 7 lety +1

    Great lecture Dr. Ali...Thanks a lot

  • @chaoyufeng9927
    @chaoyufeng9927 Před 5 lety +1

    it's amazing and it really made me understand clearly!!!!!!!!!

  • @Dev-rd9gk
    @Dev-rd9gk Před 5 lety

    Amazing lecture!

  • @josephkomolgorov651
    @josephkomolgorov651 Před 3 lety

    Best lecture on PCA!

  • @msrasras
    @msrasras Před 6 lety

    Great lecture, thank you sir

  • @husamatalla8912
    @husamatalla8912 Před 7 lety

    ALL Thanks Dr.Ali

  • @haideralishuvo4781
    @haideralishuvo4781 Před 3 lety

    Amazing lecture , Fabulous

  • @mu11668B
    @mu11668B Před 3 lety +1

    Wow. This IS what I'm looking for!! Thank you SO much!
    BTW the explanation for 20:21 is simple if you already have some experience of manipulating with linear algebra.
    Just decompose the matrix S into EΛ(E^-1) and the sum will turn into sum of ratios of eigenvalues, with the ratios sum up to 1. (assume that the data are already standardized, which is crucial.)
    Thus you have to put the ratio of corresponding eigenvector to 1 to get the max sum, which is the maximum eigenvalue.

  • @yuanhua88
    @yuanhua88 Před 4 lety

    best video about pca math thanks

  • @iOSGamingDynasties
    @iOSGamingDynasties Před 3 lety

    Great video! Really nice explanation

  • @alirezasoleimani2524
    @alirezasoleimani2524 Před 9 měsíci

    Amazing lecture. I really enjoyed every single second ....

  • @jimm9465
    @jimm9465 Před 6 lety +1

    the best ever, thanks!

  • @bosepukur
    @bosepukur Před 6 lety

    excellent lecture

  • @debayondharchowdhury2680

    This is Gold.

  • @rajeshreddy3133
    @rajeshreddy3133 Před 4 lety

    Amazing lecture..

  • @VahidOnTheMove
    @VahidOnTheMove Před 5 lety

    Great lecturer!

  • @lavanya7339
    @lavanya7339 Před 3 lety

    wow....great lecture

  • @ksjksjgg
    @ksjksjgg Před 2 lety

    concise and clear explanation

  • @purushottammishra3423
    @purushottammishra3423 Před 17 dny

    I got answers to almost every"WHY?" that I had while reading books.

  • @user-mn8th3ie1t
    @user-mn8th3ie1t Před 5 lety

    Good lecture. PCA tries to find the direction in the space, namely a vector, that maximises the variance of the projected points or observations on that vector. Once the above method finds the 1st principal component, the second component is the vector orthogonal to the first component.

  • @MSalman1
    @MSalman1 Před 2 lety

    Excellent explanation!!

  • @mariasargsyan5170
    @mariasargsyan5170 Před 4 lety +2

    he is great

  • @oguzvuruskaner6341
    @oguzvuruskaner6341 Před 3 lety

    There is more mathematics in this video than a data science curriculum.

  • @bhrftm5178
    @bhrftm5178 Před 4 lety +1

    دم شما گرم. عالی بود.

  • @lmurdock1250
    @lmurdock1250 Před 4 lety

    mind blown in the first two minutes

  • @yuanhua88
    @yuanhua88 Před 4 lety

    great lecture thanks!!!

  • @jeffreyzhuang4395
    @jeffreyzhuang4395 Před rokem

    43:03 The entries in Σ are not eigenvalues of A transpose A, but square roots of eigenvalues of A transpose A.

  • @maurolarrat
    @maurolarrat Před 6 lety

    Excellent.

  • @bhomiktakhar8226
    @bhomiktakhar8226 Před 2 lety

    Oh what an explanation!!

  • @YashMRSawant
    @YashMRSawant Před 5 lety

    Sir I have one question @1:01:50. If I had only one face image with each pixel distribution independent of other but mean corresponds to original face value at that pixel. I think first, second and so on PCs are noise dominant and we are still able to see the face.?

  • @ProfessionalTycoons
    @ProfessionalTycoons Před 5 lety +1

    AMAZING!

  • @jaivratsingh9966
    @jaivratsingh9966 Před 5 lety +3

    Dear Prof, at 28:46 you say that tangent of f and tangent of g are parallel to each other - possibly you meant to say that gradient ie normal of f and normal of g are parallel to each other. Anyways it effectively means the same thing. Excellent video!

  • @alexyakyma1479
    @alexyakyma1479 Před 2 lety

    Good lecture. Thank you.

  • @kamilazdybal
    @kamilazdybal Před 5 lety +2

    Great lecture! Tip to the camera person: there's no need to zoom in on the powerpoint. The slides were perfectly readable even when they were at 50% of the video area but it is much better to see the lecturer and the slide at the same time. Personally, it makes me feel more engaged with the lecture than just seeing a full-screen slide and hearing the lecturer's voice.

  • @suhaibkamal9481
    @suhaibkamal9481 Před 4 lety

    not a fan of learning through youtube videos , but this was an excellent lecture

  • @slowcummer
    @slowcummer Před 3 lety

    He's an astute mathematician with virtuoso teaching skills.

  • @Anil-vf6ed
    @Anil-vf6ed Před 6 lety

    Dear Prof, Thanks for the lecture. Is it possible to share the lecture materials? Thank you!

  • @bodwiser100
    @bodwiser100 Před 2 lety

    Awesome!

  • @mojtabafazli6846
    @mojtabafazli6846 Před 6 lety

    Thats great , can we have access to that noisy dataset ?

  • @ardeshirmoinian
    @ardeshirmoinian Před 4 lety

    so using SVD is it correct to say that columns of U are similar to PC loadings (eigenvalue scaled eigenvectors) and V is the scores matrix?

  • @NirajKumar-hq2rj
    @NirajKumar-hq2rj Před 3 lety +1

    Around 44:50 , u explained M as set of mean values of x_i data points, shouldn’t mean (xi) = 1/d rather than 1/n *sum of xi over i = 1 to d

  • @asmaalsharif358
    @asmaalsharif358 Před 5 lety +2

    thanks for this explanition.please how can i contact with you?i have inquiry

  • @Amulya7
    @Amulya7 Před 2 lety

    43:20, aren't they the square roots of eigenvalues of XTX or XXT?

  • @zhaoxiao2002
    @zhaoxiao2002 Před 2 lety +1

    At time 1:03:26, [U, D, V] = svd (X). Question: shall we do svd(X - E(X)), since X contain pixel values in [0, 255] and the data points X is not centered to E(X)?

  • @betterclever
    @betterclever Před 6 lety

    Lecture is great but that struggle to find image size though.

  • @Rk40295
    @Rk40295 Před rokem

    بالتوفيق ان شاء الله

  • @qasimahmad6714
    @qasimahmad6714 Před 3 lety

    Is it important to show 95% confidence ellipse in PCA? why it is so? If my data is not drawing it then what should i do ? can i used PCA score graph without 95% confidence ellipse?

  • @PradeepKumar-tl7dd
    @PradeepKumar-tl7dd Před 2 měsíci

    best video oh PCA

  • @ayouyayt7389
    @ayouyayt7389 Před rokem

    At 17:25 sigma should be sigma squared to call it variance if not we say standard deviation.

  • @obsiyoutube4828
    @obsiyoutube4828 Před 4 lety

    We need code and application areas of PCA?

  • @user-gd8bt9qs4l
    @user-gd8bt9qs4l Před 5 měsíci

    c'est un grand

  • @godfreypigott
    @godfreypigott Před 3 lety

    Why has lecture 3 been deleted? How do we watch it?

  • @usf5914
    @usf5914 Před 4 lety

    tanks.

  • @chawannutprommin8204
    @chawannutprommin8204 Před 6 lety

    This gave me a moment of epiphany.

  • @aayushsaxena1316
    @aayushsaxena1316 Před 6 lety

    perfect :)

  • @rabeekhrmashow9195
    @rabeekhrmashow9195 Před 3 lety

    Thank you it’s fist time I understand PC but I am studying master financial mathematics sorry I just want to do every step manual is that possible

  • @kheireddinechafaa6075
    @kheireddinechafaa6075 Před 3 lety

    at 18:03 I think "a square times sigma square" not sigma?

  • @monalisapal6586
    @monalisapal6586 Před 3 lety

    Can I find the slides online ?

  • @aravindanbenjamin4766
    @aravindanbenjamin4766 Před 3 lety

    Does anyone know the proof for the second pc ?

  • @nazhou7073
    @nazhou7073 Před 5 lety

    太神奇了!

  • @arnoldofica6376
    @arnoldofica6376 Před 5 lety

    English subtitles please!

  • @rampage14x13
    @rampage14x13 Před 5 lety

    Around 22:00 can someone explain why the function is quadratic?

    • @yannavok7901
      @yannavok7901 Před 5 lety +2

      t=transpose
      ^2= square
      This function is quadratic because of u and ut:
      Quadratic function for one variable has the following form : ax^2 + bx + c
      Quadratic function for two variables has the following form ax^2 + bxy + cy^2 + dx + ey + g
      Let's consider an example:
      1- Suppose vector u=[x1]
      [x2]
      then ut = [x1 x2]
      matrix S=[1/2 -1]
      [-1/2 1]
      2- ut S gives us the following vector:
      ut S = [ 1/2*x1-1/2*x2]
      [ -x1 + x2 ]
      3- ut S u gives the following function which will be a scalar if the vector u is known:
      ut S u = 1/2 * x1^2 + x2^2 -3/2 * x1 * x2
      ut S u is quadratic

    • @rbzhang3374
      @rbzhang3374 Před 5 lety

      Definition?

  • @berknotafraid
    @berknotafraid Před 4 lety

    ADAMSIN

  • @abhilashsharma1992
    @abhilashsharma1992 Před 4 lety

    at 19:32 why is var (u_1 transpose x)=u__1 transpose s u)

    • @khubaibraza8446
      @khubaibraza8446 Před 4 lety +3

      S is just a notation.
      S is covariance matrix of original matrix X ,
      u1 is constant(We can say) . In variance constant become square but in the case of vectors form you write u1 u1_transpose.
      final expresssion is u1 X u1_transpose

  • @mayankkhanna9644
    @mayankkhanna9644 Před 3 lety

    how??? How is the variance of the projected data = u^(T)SU

  • @andrijanamarjanovic2212

    👏👏👏👏👏👏👏👏👏👏👏👏👏

  • @VanshRaj-pf2bm
    @VanshRaj-pf2bm Před měsícem

    Ye lecture kis bachhe ke liye h

  • @masor17utm86
    @masor17utm86 Před 5 lety

    why is var (u_1 transpose x)=u__1 transpose s x)

    • @yannavok7901
      @yannavok7901 Před 5 lety +4

      t= transpose
      ^2= squared
      In ordrer to demonstrate that Var(ut X) = ut S u I will use
      - the könig form of the variance Var(X)= E(X^2) - E^2(X)
      - and this covariance matrix form COV(X)= E(X Xt) - E(X) [E(X)]t
      So let's start:
      We will use the köning form to define the variance:
      1- Var(ut X) = E((ut X)^2) - E^2(ut X)
      * We know that (ut X)^2=(ut X) [(ut X)]t so the first quantity becomes: E((ut X)^2) = E( (ut X) [(ut X)]t )
      The second quantity becomes: E^2(ut X)=E(ut X) [E(ut X)]t
      And we get:
      2- Var(ut X)= E( (ut X) [(ut X)]t ) - E(ut X) [E(ut X)]t
      * We know that [ut]t = u and [(ut X)]t= (Xt u) (notice that the transpose has changed the multiplication order)
      so the first quantity will change like this: E( (ut X) [(ut X)]t ) = E( (ut X) (Xt u) )
      And we get:
      3-Var(ut X) = E( (ut X) (Xt u) ) - E(ut X) [E(ut X)]t
      * We know that Expectancy of a vector(or matrix) filled with scalars gives the same vector(or matrix)
      and Expectancy of a vector(or matrix) filled with random variables gives Expectancy of that vector(or matrix)
      In others words: E(u)=u, E(ut)= ut , E(X Xt)=E(X Xt) and E(X)=E(X)
      So the first quantity becomes E( (ut X Xt u) ) = E(ut) E(X Xt) E(u)
      = ut E(X Xt) u
      and the second quantity becomes E(ut X) [E(ut X)]t = E(ut) E(X) [E(ut) E(X)]t
      = ut E(X) [ut E(X)]t
      = ut E(X) [E(X)]t u
      And we get:
      4-Var(ut X) = ut E(X Xt) u - ut E(X) [E(X)]t u
      * let's factorize by ut
      And we get:
      5-Var(ut X) = ut [ E(X Xt) u - E(X) [E(X)]t u ]
      * let's factorize by u
      And we get:
      6 -Var(ut X) = ut [ E(X Xt) - E(X) [E(X)]t ] u
      * We know that COV(X)= E(X Xt) - E(X) [E(X)]t
      And we get:
      7-Var(ut X) = ut COV(X) u
      * Here S = COV(X)
      And finally, we have:
      8-Var(ut X) = ut S u

  • @arsenyturin
    @arsenyturin Před 3 lety

    I'm still lost :(

  • @logicboard7746
    @logicboard7746 Před 2 lety

    Jump @17:20 then @29:30 @42:10

  • @mortezaahmadpur
    @mortezaahmadpur Před 5 lety

    viva Iran

  • @ProfessionalTycoons
    @ProfessionalTycoons Před 5 lety

    2

  • @CTT36544
    @CTT36544 Před 5 lety

    1:14 Be careful that this example is not that proper. Note that PCA is basically a system for axis rotation and hence it usually does not have good applications for those data with "donut" (or, swiss roll) structure. A better way is either to use kernel PCA or MVU (maximum variance unfold).

    • @YashMRSawant
      @YashMRSawant Před 5 lety +1

      I think this is not about PCA but the fact that distributions in higher dimensions can be projected to lower dimensions such that there is one to one correspondence between higher dimensional and lower dimension counterparts as much as possible.

    • @anilcelik16
      @anilcelik16 Před 3 lety

      He already mentions that, the assumption is that the data is aligned close to a plane like a paper

  • @raduionescu9765
    @raduionescu9765 Před 3 lety

    WITH THE HELP OF GOD WE ADVANCE IN A STRAIGHT LINE THINKING SPEAKING BEHAVIOR ACTIONS LIFE TO THE HIGHEST STATE OF PERFECTION GOODNESS RIGHTEOUSNESS GOD'S HOLINESS EXACTLY AS WRITTEN IN THOSE 10 LAWS

  • @parameshwarareddypalle6013

    worst lecture