A Surprising Pi and 5 - Numberphile

Sdílet
Vložit
  • čas přidán 21. 06. 2024
  • Ben Sparks discusses 5 and Pi. Catch a more in-depth interview with Ben on our Numberphile Podcast: • The Happy Twin (with B...
    Check out Brilliant (get 20% off their premium service): brilliant.org/numberphile (sponsor)
    More links & stuff in full description below ↓↓↓
    Ben's website: www.bensparks.co.uk
    More Numberphile videos with Ben Sparks: bit.ly/Sparks_Playlist
    Catch Ben on the latest Numberphile Podcast: • The Happy Twin (with B...
    More podcast episodes: bit.ly/numberphile_podcast
    Numberphile is supported by the Mathematical Sciences Research Institute (MSRI): bit.ly/MSRINumberphile
    We are also supported by Science Sandbox, a Simons Foundation initiative dedicated to engaging everyone with the process of science. www.simonsfoundation.org/outr...
    And support from Math For America - www.mathforamerica.org/
    NUMBERPHILE
    Website: www.numberphile.com/
    Numberphile on Facebook: / numberphile
    Numberphile tweets: / numberphile
    Subscribe: bit.ly/Numberphile_Sub
    Videos by Brady Haran
    Patreon: / numberphile
    Numberphile T-Shirts and Merch: teespring.com/stores/numberphile
    Brady's videos subreddit: / bradyharan
    Brady's latest videos across all channels: www.bradyharanblog.com/
    Sign up for (occasional) emails: eepurl.com/YdjL9
  • Věda a technologie

Komentáře • 1,2K

  • @numberphile
    @numberphile  Před 4 lety +69

    Catch a more in-depth interview with Ben on our Numberphile Podcast: czcams.com/video/-tGni9ObJWk/video.html

    • @uquf
      @uquf Před 4 lety +2

      I’m the first!

    • @amritanshubarpanda1325
      @amritanshubarpanda1325 Před 3 lety +3

      When I tried various 5's in my calculator, I found out that the number of 5's you enter and start the trick, the value of 'pi' is correct.
      Like for example-
      Let t(x) = sin(1/x)
      So t(5) has 1 digit equal to pi i.e 3 and the rest digits are different
      t(55) has 2 digit equal to pi i.e 3.1 and the rest digits are different
      t(555) has 3 digit equal to pi i.e 3.14 and the rest digits are different
      t(5555) has 4 digit equal to pi i.e 3.141 and you know what.....
      t(55555) has 5 digit equal to pi i.e 3.1416 [ actually it should be 3.1415 but 3.14159 ~3.1416]
      t(555555) has 6 digit equal to pi i.e 3.14159
      And so on...
      I really feel that this part was needed to be in this video.
      If you trust me, then I have no problem;
      But if you don't, then try out this pattern with your own calculator.
      Regards
      Yours Truly
      Amritanshu Barpanda

    • @filip_djordjic742
      @filip_djordjic742 Před 3 lety +1

      In Bosnia we do use radians in statics.
      Also, dots are alo used to denominate the reoccuring sequence.

    • @mrnobody2873
      @mrnobody2873 Před 2 lety +1

      Calendar fractions( Degrees) were used because of astronomy since ancient times, with a degree being a day off of an alignment. Because of how integral the calendar was to agriculture, degrees were an essential way of looking at angles.
      Radians and Gradians are often used in math libraries for games with physics simulations, moreso space based games. It's often way eraser to calculate a metric angle internally and convert it to degrees for a UI element if necessary. The reason it it used internally is because of FPP and hard to debug rounding errors that may popup far downstream when using degrees.

    • @millicentsmallpenny5837
      @millicentsmallpenny5837 Před rokem +1

      Its refreshing to find sanity and rationality here. Been watching some jain 108 vids. Nuff said

  • @benjamintoddjohnson
    @benjamintoddjohnson Před 4 lety +2270

    I'm a bit surprised that after learning about gradians, Brady didn't come up with a new angle measurement known as bradians.

    • @digitig
      @digitig Před 4 lety +128

      "Binary radians"? Maybe a full turn is 1?

    • @Waggles1123
      @Waggles1123 Před 4 lety +91

      @@digitig That's actually already used in measuring revolutions.

    • @ShabbaDabb
      @ShabbaDabb Před 4 lety +7

      Ooooooo

    • @Codricmon
      @Codricmon Před 4 lety +141

      I would assume that bradians are used to measure Parker circles.

    • @DerekMacaroni
      @DerekMacaroni Před 4 lety +73

      @@Codricmon No, that's a different thing. There are 3 Parker radians in a circle.

  • @vivekg8725
    @vivekg8725 Před 4 lety +628

    Engineers be like “I told u guys sinx =x”

  • @SoleaGalilei
    @SoleaGalilei Před 4 lety +435

    "Our choice is free, we just have to accept the consequences." Truer words.

    • @neillunavat
      @neillunavat Před 3 lety +10

      Who are you, so wise in the name of science?

    • @themathmoth7393
      @themathmoth7393 Před 3 lety +8

      @@neillunavat ways*

    • @jevicci
      @jevicci Před 3 lety +6

      Sound like Rush lyrics.

    • @blueredbrick
      @blueredbrick Před 3 lety +2

      I love how the taylor expansion broke down with using a singe 5 :)

    • @benmerkey8823
      @benmerkey8823 Před 2 lety +1

      choose 1, turns are the superior unit of angle

  • @yeahuh4128
    @yeahuh4128 Před 3 lety +319

    "If there's Pi somewhere, it means that the equation is related to circles."
    -3B1B

    • @Nah_Bohdi
      @Nah_Bohdi Před 2 lety +24

      ....only the Sith deal in absolutes.

    • @rhythmgoel4245
      @rhythmgoel4245 Před 2 lety +2

      I know this one

    • @dedgzus6808
      @dedgzus6808 Před 2 lety +2

      not always.

    • @kurumi394
      @kurumi394 Před 2 lety +6

      @@dedgzus6808 Can you give us an example? Genuinely curious

    • @dedgzus6808
      @dedgzus6808 Před 2 lety +1

      @@kurumi394 Euler's answer to the Basel problem is the best example I can give.

  • @pinkdispatcher
    @pinkdispatcher Před 4 lety +233

    The military sometimes use 6400 units (called "Strich" in German, literally "stroke", or "line") to a full circle, which divides very nicely, and is also close enough to 2000 Pi to make distance estimates very simple if you have binoculars with "Strich" grading and know the actual size of objects. A thing of apparent angle of 1 Strich, that is 1 m long, is 1 km away.

    • @InShortSight
      @InShortSight Před 4 lety +3

      I love maths.

    • @thefakepie1126
      @thefakepie1126 Před 4 lety +18

      I'm not a mathematician so I like to use 1 units (full circle , half circle , third circle , quarter circle , half quarter circle , quarter quarter circle , just a small bit , just a veeeeery small bit , ect...)
      73 degrees would be : about 5 half quarter third circle minus a tiny bit
      I love this system , straight to the point

    • @alandouglas2789
      @alandouglas2789 Před 4 lety +1

      InShortSight :3 You realise that’s its apparent size, and not equal to right?

    • @hatebreeder999
      @hatebreeder999 Před 4 lety +5

      @@thefakepie1126 similar system is used in music to divide time duration of notes..whole note half note quarter note third note..etc

    • @geoffroi-le-Hook
      @geoffroi-le-Hook Před 3 lety +7

      In the US they call that a mil

  • @alttiakujarvi
    @alttiakujarvi Před 4 lety +365

    A more intuitive way would have been to stick with fractions, introduce the unit conversion and refactorize the 1/55555*Pi/180.
    You end up with:
    Pi/(55555*180)
    = Pi/(11111*5*180)
    = Pi/(11111*900).
    =Pi/9999900
    Each added "5" in the trick adds an other "1" in the refactorization and a "9" in the final fractions. From here it is quite clear why this happens: adding "5" increases the divisor, which gets closer and closer to a full power of 10.

    • @paul55604
      @paul55604 Před 4 lety +10

      I'd add one more line: =PI*(1 - 1/n), where n is the number of 5s.

    • @AdamSpanel
      @AdamSpanel Před 4 lety +2

      @@paul55604 What? No. It should be Pi * (1 - (1 + ((10^n - 1) * 100)) / ((10^n - 1) * 100))

    • @926prasenjit
      @926prasenjit Před 4 lety +9

      ​@@AdamSpanel 1/180=0.0055555555... is the key here

    • @926prasenjit
      @926prasenjit Před 4 lety +3

      @@paul55604 ​ BoltKey 1/180=0.0055555555... is the key here

    • @davefoc
      @davefoc Před 4 lety +4

      @@926prasenjit Cool and it answers my question. Do more fives get you closer to pi. I think that might be obvious to somebody that can think about this better than I could, but this makes what is going on clear. Well done. Also well done to Altti Akujärvi whose comment came pretty close to this.

  • @orsettomorbido
    @orsettomorbido Před 4 lety +40

    "It's Pi enough to cause a reaction in anybody who has seen Pi before" HAHAHA

  • @shpensive
    @shpensive Před 4 lety +626

    There's a fine line between a numerator and a denominator

    • @user-me7hx8zf9y
      @user-me7hx8zf9y Před 4 lety +8

      thanks.

    • @Aadil2Adnan
      @Aadil2Adnan Před 4 lety +38

      It's called a vinculum apparently

    • @javid29
      @javid29 Před 4 lety +93

      Only a fraction of people will find this joke funny

    • @superscatboy
      @superscatboy Před 4 lety +9

      Ha ha yes like the joke in the video ha ha

    • @alveolate
      @alveolate Před 4 lety +43

      @@javid29 because this old joke is really divisive.

  • @Jim73
    @Jim73 Před 4 lety +514

    I can't stop wondering where that ladder goes to....

  • @laurak1545
    @laurak1545 Před 4 lety +114

    These mathematicians all seem so freaking happy

    • @WillToWinvlog
      @WillToWinvlog Před 3 lety +22

      it's cuz they are being paid to share recreational math

    • @chrisengland5523
      @chrisengland5523 Před rokem +2

      Only when they've found the answer.

    • @DavidMcCoul
      @DavidMcCoul Před rokem +3

      And you're not?? When numbers work out beautifully it's a wonderful thing!

  • @samiraperi467
    @samiraperi467 Před 4 lety +9

    I like unexpected pie.

  • @mebamme
    @mebamme Před 4 lety +151

    4:21 I was sure Brady was about to define a new unit and call it "Bradians".

    • @davidgalloway7195
      @davidgalloway7195 Před 3 lety +4

      We already have Bradians. Defined in the eighties (at least) it referred to, at the time, 256 slices around a circle but later it could be 4096 or other powers of two slices.

    • @aurelia8028
      @aurelia8028 Před 3 lety +1

      With his ego, he'd _love_ that

    • @Sciencedoneright
      @Sciencedoneright Před 2 lety +1

      @@davidgalloway7195 woah

  • @hadz8671
    @hadz8671 Před 4 lety +44

    grads are sometimes used to measure latitude on maps of France, because metre was designed so that 1 grad of lat = 100km.

  • @TheAlps36
    @TheAlps36 Před 4 lety +25

    Thanks for explaining what GRAD means on calculators! I don't think even my maths teachers knew

  • @therizinosauruscheloniform9709

    sin(x) = x
    * laughs in engineering *

    • @doomdoot6731
      @doomdoot6731 Před 4 lety +13

      Only for smol angles though. Also iirc the step where you assume that to simplify differential equations is called "linearisation" or something along those lines. Because you turn a sine function into a linear function.

    • @panonf.9106
      @panonf.9106 Před 4 lety +26

      @@doomdoot6731 cos(x) = 1

    • @integralboi2900
      @integralboi2900 Před 4 lety +27

      Sin x = tan x = x

    • @Ohmau33
      @Ohmau33 Před 4 lety +21

      *physicists have entered the chat*

    • @Jet-Pack
      @Jet-Pack Před 4 lety +4

      @@Ohmau33 pi=3.14

  • @cerwe8861
    @cerwe8861 Před 4 lety +686

    If you see π, a circle isn't far.

    • @N.I.R.A.T.I.A.S.
      @N.I.R.A.T.I.A.S. Před 4 lety +78

      I guess you just have to wait until they get around to it, ba doom tssh.

    • @XerosXIII
      @XerosXIII Před 4 lety +16

      You can almost smell it.

    • @joonatan003
      @joonatan003 Před 4 lety +2

      @@XerosXIII 🤣

    • @adolfojasso796
      @adolfojasso796 Před 4 lety +20

      @@theprofessionalfence-sitter and from where do radians and degrees come from?

    • @XenoghostTV
      @XenoghostTV Před 4 lety +3

      @@theprofessionalfence-sitter Bruh

  • @CanaanPoE
    @CanaanPoE Před 4 lety +9

    I had a year of college trigonometry and still didn't quite understand radians, and you just explained it to me in about 30 seconds and now it just makes sense. I wish I had teachers that were this clear and concise when teaching.

  • @achance75
    @achance75 Před 2 lety +13

    Gradians are often used here in Sweden in land surveying. They are sometimes refered to as new degrees but best known as gon. From the Greek word “gonia” which means angle. So trigonometry means literally three-angle-measurement. They are used mainly to simplify calculations and to avoid the need for conversions between degrees minutes and seconds which have different bases (multiples).

  • @litchqueenasenath5995
    @litchqueenasenath5995 Před 4 lety +72

    "Pi/4 radians of pizza please."
    "What is that, like a slice?!"
    "More like exactly a slice!"

    • @davidwuhrer6704
      @davidwuhrer6704 Před 4 lety +13

      I prefer π·𝑧·𝑧·𝑎 units of pizza, where 𝑧 is the radius, and 𝑎 is the height.

    • @RWBHere
      @RWBHere Před 4 lety +9

      Six radians, please. And you can keep the change!

  • @hepiik.8822
    @hepiik.8822 Před 4 lety +144

    9:55
    In Poland we use brackets for it
    So it will look like
    0.0(000018)
    and it means
    0.0000018000018000018....

    • @RazvanMihaeanu
      @RazvanMihaeanu Před 4 lety +14

      Same in Romania

    • @bagratmakhmutov4854
      @bagratmakhmutov4854 Před 4 lety +20

      This notation is used in all former Soviet Republics as well.

    • @chwytliwanazwa4853
      @chwytliwanazwa4853 Před 4 lety +2

      myślałam że w innych krajach jest tak samo

    • @hetulbhatt5787
      @hetulbhatt5787 Před 4 lety +8

      In India we put a bar on the recurring digits. However, while programming we use parentheses.

    • @User050068
      @User050068 Před 4 lety +1

      @Adriano Andrade Всё для удобства пользователя.

  • @bemusedindian8571
    @bemusedindian8571 Před 4 lety +16

    I have said this before, Ben Sparks has the best Numberphile videos. Period.

  • @phoenixstone4208
    @phoenixstone4208 Před 4 lety +304

    shame, he clearly should be using the legendary Gaxio

    • @AlKaBen
      @AlKaBen Před 4 lety +23

      More unboxing videos !!!

    • @andie_pants
      @andie_pants Před 4 lety +8

      i have no idea what that means, but have an upvote nonetheless! :-)

    • @heyandy889
      @heyandy889 Před 4 lety +8

      Hello calculator fanciers, welcome back to another calculator review video

    • @leadnitrate2194
      @leadnitrate2194 Před 4 lety +6

      @@andie_pants go watch Matt Parker's calculator unboxing videos on this channel. Hilarious.

    • @AlKaBen
      @AlKaBen Před 4 lety +2

      @@andie_pants it's an inside joke, there is a hilarious video with matt parker unboxing calculators.

  • @mscha
    @mscha Před 4 lety +48

    One thing that is missing from this explanation is in chapter two: why is the gradient of the sine function (in radians) 1, close to 0?
    The reason is, that the sine is basically the y coordinate from the point after walking a certain distance along the unit circle starting at (1, 0). And when you walk a tiny bit (e.g. 0.00000001π), you're basically walking straight up (to approx. (1, 0.00000001π)).

    • @Gehr96
      @Gehr96 Před 4 lety +10

      Or mathematically more rigorous: The reason lies in the Taylor approximation of sin(x) at x=0. We have sin(0) = 0. d/dx sin(0) = cos(0) = 1. Therefore sin(x) ≈ 1 x = x.
      If you want a more accurate approximation you can add the next term:
      d²/dx² sin(0) = -sin(0) = 0, d³/dx³ sin(0) = -cos(0) = -1. Therefore sin(x) ≈ 1 x - 1 x³/3! = x - x³/6.

    • @stephenbeck7222
      @stephenbeck7222 Před 4 lety +13

      Gehr96 the Taylor series relies on the derivative of sine, which is what Michael is laying the groundwork for. You need the limit of sin(x)/x as x goes to 0 to be 1, which is generally proven with geometry and the squeeze theorem. You use that limit to prove the derivative of sine.

  • @BaronSamedi1959
    @BaronSamedi1959 Před 4 lety +29

    I like "mills" to measure angles. 1 mill is the angle of 1 m seen at a distance of 1km. It makes it easy to convert angles into lengths at a certain distance (multiply the angle in mills by the distance in km and you get the length of that angle at that distance). Why would you do ever want to do that? Artillery observers use it to correct the fall of shot. You know the target is 1.5 km away and the first short fell 40 mills to the left of the target. You correct the next shot with a "Right 60"(40 x 1.5) and you should be fine. Of course, that doesn't take into account the errors in each shot, so you actually don't correct until after a number of ranging shots. Then you add (or subtract) all errors and make one average correction.
    Also, to get the distance of the shot right, you use a binary search algorithm: your first correction is always a 400m "jump", then 200m, then 100m and finally 50 for the "fire for effect".
    And finally, you compare the fall of each shot with some kind of "standard deviation" (called "F a" or "Fourchette Apparente"). If the shot falls outside of the "F a" measurement, then you don't take it into account as it was not part of the same "statistical family" of shots and shouldn't be used.
    Being a forward observer, really made you use trigonometrics, mathematics and statistics in a practical way. And no calculators used! You had about 5 seconds to do all these calculations in your head and give the order to correct the next shot.
    You should make a numberphile about such practical uses of mathematics.
    (To give some background: that was how it was done up to the 1980s. Now it is all laser range finders and computers, bit I was trained to only use a map, a magnetic compass and binoculars with crosshairs graduated in mills.)

    • @Ultiminati
      @Ultiminati Před 4 lety +3

      that's cool

    • @KnaveRain
      @KnaveRain Před 4 lety +1

      Man that is amazing, I never knew so much work went into that. I wish they would integrate things like these into the curriculum. Im not a huge fan of math, but thats a super cool application.

    • @sluggermendoza9903
      @sluggermendoza9903 Před 4 lety +1

      Whoa, finally an explanation for the stuff they do with arty in war movies. Thank you! I had some idea of the corrections using mills, but I had no idea you had to think about the standard dev. and averaging all the corrections for the fire for effect.

    • @anotheraggieburneraccount
      @anotheraggieburneraccount Před 4 lety +2

      Sounds like .001 radians

    • @PC_Simo
      @PC_Simo Před 14 dny

      @@KnaveRain I’m pretty sure they would do stuff like that, in the 3rd Reich: Teach students the derivatives of Maths, for military purposes. They literally had a class for making paper planes.

  • @ximecreature
    @ximecreature Před 4 lety +30

    Oh wow surprised to see the word vinculum here.
    Last time i've seen it was at the university, studying law. Vinculum iuris was the legal bound between parts of a contract in ancient Rome [Gaius].
    Vinculum is a bind. The numbers here are "bound" together to be repeated.
    That one will be easy to remember for me !

  • @GabrielPohl
    @GabrielPohl Před 4 lety +391

    Engineers be like: π and 5? I don't see any difference

    • @raphaelkelly861
      @raphaelkelly861 Před 4 lety +41

      Ceil(e) = floor(π) = 3

    • @ethandavenport4310
      @ethandavenport4310 Před 4 lety +21

      Cosmologists be like: π and 10? I don't see any difference

    • @TruthNerds
      @TruthNerds Před 4 lety +21

      @@raphaelkelly861 π=3 for sufficiently small values of π and sufficiently large values of 3.

    • @RWBHere
      @RWBHere Před 4 lety +17

      Funny that you say that. We had an electrotechnology lecturer on our degree course who routinely rounded complex equations by using the approximations (Pi) squared = 10, and g = 10 N/sec squared, then cancelling them all out with any tens on the other side of the equation. Of course 10 = 2 x 5.
      This can turn some very complex equations (to a mathematician) into simple mental arithmetic for an engineer. His results were never wrong by more than 5%, and generally closer than 1%, which is usually more accurate than the results which most real-world situations can be expected to give. Most people using a rule, for example, never read hundredths of a millimetre, and only really finicky chefs measure ingredients to much closer than 5%.
      In wafer fabrication (my field), you can calculate all parameters to the finest possible, but the resulting semiconductors will have a normal distribution of characteristics which can range from near-perfect to unusable, across a wafer, simply because of semiconductor imperfections, temperature gradients, thermostat variations, the accuracy of etching and doping chemical molarity, operator techniques, degree of cleanliness, etc.
      In reality, two identical robot systems, or two people, working together, following exactly the same procedures, in time with one-another, and using the same opting ovens simultaneously will have different results, which only rarely match within 1%.

    • @TruthNerds
      @TruthNerds Před 4 lety +9

      ​@@RWBHere I don't think OP doubts that engineer calculations are accurate enough to give usable results. It's still funny to think about it from a mathematical perspective, though, where you are expected to be 100% accurate, e.g. you would get a point deduction in a math test iif you substituted 355/113 for π, even though the relative error is less than one in ten million.

  • @JNCressey
    @JNCressey Před 4 lety +70

    2:28 "we haven't mentioned a circle yet"
    but... "sin"

    • @RFC3514
      @RFC3514 Před 4 lety +8

      By that logic, you're "mentioning a circle" whenever you measure the angle between two straight lines. The fact is, he _hadn't_ mentioned a circle. He (and most viewers) obviously knew that trigonometric functions (despite being derived from triangles) are closely linked to circles.

    • @black_platypus
      @black_platypus Před 4 lety +3

      "repent"

    • @ravindrawiguna8681
      @ravindrawiguna8681 Před 4 lety +3

      @@RFC3514 kinda... ish

    • @PC_Simo
      @PC_Simo Před 14 dny +1

      @JNCressey My thoughts, exactly 🎯!

  • @SimBol1216
    @SimBol1216 Před 4 lety +184

    Interesting to see Russell Crowe teaching mathematics.

  • @bazoo513
    @bazoo513 Před 4 lety +11

    This was fun, and Ben obviously enjoyed leading us through it. Well done, guys!

  • @agustingomez7142
    @agustingomez7142 Před 4 lety +12

    Every video with Ben Sparks blows my mind!

  • @acetate909
    @acetate909 Před 4 lety +35

    @2:02
    "Yaaaa, pie like"

  • @whydontiknowthat
    @whydontiknowthat Před 4 lety +9

    There’s a nice generalization of this to numbers other than 5. It turns out that if you use the number n (where n is a positive integer), then the decimal expansion tends to 5pi/n.

  • @davidborger7159
    @davidborger7159 Před 4 lety +63

    As far as I know, ancient mathematicians used 360 as it had a lot of factors((2^3)*(3^2)*5)making eventual divisions easier. Also, babilonians used a base-60 numerical system, so they might have used 360 as well

    • @Ddub1083
      @Ddub1083 Před 4 lety +3

      Yes. It is known as a highly composite number. Any number that has more factors than any number lower than it. They are also called "anti-primes"

    • @RazvanMihaeanu
      @RazvanMihaeanu Před 4 lety +1

      The answer is Pythagorean triple:
      3x4x5=60
      Lot of space to turn around in that confined space...

    • @hamiltonianpathondodecahed5236
      @hamiltonianpathondodecahed5236 Před 4 lety

      btw another possible explanation is that the earth takes about 360 days to revolve around the sun hence the people in the ancient times would have taken it for convenience

    • @N.I.R.A.T.I.A.S.
      @N.I.R.A.T.I.A.S. Před 4 lety +1

      David Borger Interesting to know that that was a factor in their decision making, ba doom tssh.

    • @anticorncob6
      @anticorncob6 Před 4 lety +1

      It's also a "superior highly composite number", which are a special subset of the highly composite numbers.
      I wish numberphile made more videos about highly divisible numbers, kind of like how they make lots of videos about really huge numbers. It's an interesting topic.

  • @monlewi1976
    @monlewi1976 Před 4 lety +9

    7:08, damn, the most accurate handwritten sin
    wave

    • @pranavlimaye
      @pranavlimaye Před 4 lety +1

      Not really, sine waves are a lot flatter than that. Remember, 2π=6.28 which is thrice as wide as y going from +1 to -1

    • @monlewi1976
      @monlewi1976 Před 4 lety

      We don't see notation on axis, so Y could be more stratched compare to X, and yet graph perfectly align with sinwave

  • @hamgelato8143
    @hamgelato8143 Před 4 lety +78

    ah, it's happy tim

  • @kc_ee
    @kc_ee Před 4 lety +4

    This was the best recent video that you guys have put out. Props.

  • @camilohiche4475
    @camilohiche4475 Před 3 lety +12

    "Our choice is free, we just have to accept its concequences."

  • @MrForreststarr
    @MrForreststarr Před 4 lety +3

    I don’t know if I’m more satisfied with doing it myself,... or the fact he brought out the brown paper screen to explain it right at 3:14.

  • @LaGuerre19
    @LaGuerre19 Před 4 lety +4

    Always liked Ben Sparks videos, but now he is, to me, a member of the Numberphile Pantheon which includes Cliff Stoll, James Grime, and Holly Krieger, etc. What an excellent maths communicator!

  • @MrDowntownjbrown
    @MrDowntownjbrown Před 4 lety +13

    Could you do a video on the items in the background? Kind of a Numberphile/Objectivity crossover. Thanks for all the videos during this time!

  • @Veptis
    @Veptis Před rokem +3

    In school we did a class trip to do practical trigonometry. Essentially surveying the land around. So we used theodolites. Half of which were in Grad (360° degrees with minutes and seconds) and the other half in Gon or Neugrad(I guess gradians since it was 400 with decimal places). And you had to be careful to use the correct transformations for the final calculations of where to plot the features

  • @Qtini
    @Qtini Před 4 lety +11

    In that case we should expect tau to appear with repeated 25s. Or I suppose 2 followed by 7s and ending in a 5 due to the 2 digit carryover.

  • @GregB314
    @GregB314 Před 4 lety +3

    Fascinating stuff. And Ben is excellent at explaining.

  • @SigmaThoughts
    @SigmaThoughts Před 4 lety +8

    Unexpected pie is my favorite kind of pie

  • @doodlegoat
    @doodlegoat Před 4 lety +20

    555555 = 5/9 × [10^6 - 1]. If you do your evaluation with that construction, you don't need your repeating decimal with 18 in it and all that hand-waviness at the end.

    • @rocketpig1914
      @rocketpig1914 Před 3 lety

      Guess they decided that was a little too much detail to take in given all the rest.

    • @e.b.1115
      @e.b.1115 Před 3 lety

      Yes, exactly what I did!

    • @therealax6
      @therealax6 Před 3 lety

      They way I did it in my head after pausing was to "round" it to 555555.55555..., since it's an approximation after all (and this is the way it is built as you add more fives). That makes the -1 go away (that's just 5/9 * 10^6) and everything cancels out nicely.

  • @varunraju1569
    @varunraju1569 Před 4 lety +2

    Fascinating and very enjoyable as usual!

  • @johnfenske7764
    @johnfenske7764 Před 4 lety +69

    2:25 "We haven't mentioned a circle so far" but isn't referring to sine inherently referring to circles?

    • @Lightn0x
      @Lightn0x Před 4 lety +13

      It is, yes. That's why I didn't find this fact to be as "surprising" in the first place. You're working with trigonometric functions, and pi pops up, that's more or less expected.

    • @kylebryancagasan4447
      @kylebryancagasan4447 Před 4 lety +12

      Correct me if I'm wrong but aren't the trigonometric functions derived from triangles? You can mention trigonometric functions in the absence of circles.

    • @miguelangelmartinezcasado8935
      @miguelangelmartinezcasado8935 Před 4 lety +3

      @@kylebryancagasan4447 yeah but tell me about a triangle that can't be build by circles. It's kind of a cheat to use the sine

    • @martinepstein9826
      @martinepstein9826 Před 4 lety +9

      "Isn't referring to sine inherently referring to circles?"
      I wouldn't say so. When you refer to squaring a number are you inherently referring to regular 4 sided polygons?

    • @RodelIturalde
      @RodelIturalde Před 4 lety +8

      @@kylebryancagasan4447 trigonometry is mostly about a unit circle. And derivation if most formulas comes from clever usage of said circle.

  • @m1lkweed
    @m1lkweed Před 4 lety +105

    "2π radians"
    *angry Tau noises*

    • @avi8aviate
      @avi8aviate Před 4 lety +3

      lel tau

    • @hobbified
      @hobbified Před 4 lety +3

      Yes, clueless losers are known for their angry noises.

    • @markenangel1813
      @markenangel1813 Před 4 lety +6

      @@hobbified as are people that are constantly ignored

    • @rokronroff
      @rokronroff Před 4 lety +4

      We stan tau

    • @RWBHere
      @RWBHere Před 4 lety +1

      @M1lkweed 761 - Empty kettles....

  • @oj.b.3889
    @oj.b.3889 Před 4 lety +5

    I called this the perimeter constant
    Ω = sin(π/X)*X
    Where X is no. of sides
    Therefore perimeter is 2ΩR
    Where R is length of line between center and vertice
    Hence lim X→∞ sin(π/X)*X
    Approaches π

  • @lynk_1240
    @lynk_1240 Před 4 lety +2

    I have to say, even having degrees in both physics and engineering, I have never before encountered before today what the 'grad' on my calculator was. Thank you for enlightening me.

  • @angelasimpson5581
    @angelasimpson5581 Před 4 lety

    Thank you for this video. I now understand this basic concept of trig

  • @567secret
    @567secret Před 4 lety +15

    Pretty sure I worked it out, spoilers below:
    Basically it's to do with the small angle approximations and the conversion between radians and degrees, since pi/180 is the radians per degree and you're using a number such as 1/5 or 1/55 or 1/555 etc. you end up with something like pi/99900 radians. Since small angle approximations state that for radians sin(dx) ~ dx then you end up with a result of about pi/99900, since we use base 10 this is roughly equal to pi*10^-5.
    Edit: I showed it a similar way, but I think my way is clearer.

    • @EebstertheGreat
      @EebstertheGreat Před 4 lety +1

      The computation is sin(1/555555°) = sin(9/(5 × (10⁶ - 1))°) = sin(π/(100 × (10⁶ - 1)) rad) = sin(π/(10⁸ - 100) rad) ≈ sin(π × 10⁻⁸ rad) ≈ π × 10⁻⁸.

    • @926prasenjit
      @926prasenjit Před 4 lety +5

      1/180=0.0055555555... is the key here

  • @reox42
    @reox42 Před 4 lety +4

    Theodolites sometimes use gradians, I recently saw one with a scale in gradians. Looks like the gradians are also useful for stepper motors, as they have for example 200 steps per rotation.

    • @MeltedMask
      @MeltedMask Před 2 lety

      Gradians make mental math easier in practical applications and that is reason why its used by land surveyors in europe.
      Addition and subtraction of numbers:
      45, 90, 180, 270 in degrees
      Vs.
      50, 100, 200, 300 in gradians.

  • @theflaminglionhotlionfox2140

    I absolutely love the way he explains stuff.

  • @PC_Simo
    @PC_Simo Před 14 dny +1

    ”How many times would you like me to type the digit: ”5”?”
    *Me, a Cabtist:* ”3.”

  • @anneling529
    @anneling529 Před 4 lety +3

    Great video! I always teach my 6th grade Pre-Algebra students the words "vinculum" (and its plural, "vincula") and "repetend" and tell them they can impress people by using them at the next cocktail party they attend. (I've taught Latin, too, so I explain the literal meanings whenever I can, which is actually quite frequently in math!) Thanks to this video and the comments I've just read, I can now explain the alternate representations with dots above the beginning and end of the repetend and using parentheses around the repetend. I also never knew that a fraction bar is also called a vinculum in some parts of the world. Very interesting!
    I think I'll start teaching my wee ones about radians and gradians, too. Or maybe I'll just show them this video and let Ben do it for me...
    Also, I agree with other viewers that a Bradian (Bradyan?) should be a unit of measure and that Happy Tim needs to make a series of videos about all those cool nerdy things on the shelf behind him!

    • @chrisengland5523
      @chrisengland5523 Před rokem

      If you start talking about Latin or maths at a cocktail party, you'll probably find you're talking only to yourself for the rest of the evening.

  • @Gamedolf
    @Gamedolf Před 4 lety +5

    I first stumbled across this when I was playing with my calculator in year 8/9 and wondered why x*sin(180/x) approached pi as I put bigger numbers in for x, didn't get the answer from my teacher at the time but this explains it

    • @redpepper74
      @redpepper74 Před 4 lety

      tbird81 In middle school all three times that I asked my history teacher what the difference between Republicans and Democrats were, he just said “there’s a lot of differences.” Is modern history just too scary for me to handle? Like I pressed him but he didn’t want to give me the simplest overview.

    • @JayN_101
      @JayN_101 Před 4 lety

      The game is all about knowing your *limits*

  • @battledraw
    @battledraw Před 4 lety +4

    Those sound effects make everything way cooler

  • @jacksparrow440
    @jacksparrow440 Před 4 lety +2

    5:37 what's to notice though that, as opposed to r, theta is *dimensionless*.
    For example: r has the dimension of a length, pi*r² has a dimension of an area (i.e the square of a length), 4/3*pi*r³ has a dimesnion of a volume (i.e the cube of a lenght); but 2*pi*r has the same dimension as r (i.e a length), which means the measure of an angle has no dimension.
    This is not to be confused with units: units of measure are abritrary and useful on a daily basis, whereas the dimensionality of a measure is more fundamental

    • @scottriley5141
      @scottriley5141 Před 4 lety

      That's why there are no SI units for angles (some list them as 1). Of course, m/m cancels.

  • @samueldevulder
    @samueldevulder Před 4 lety +3

    Grad is pretty useful for navigation. Perimeter of earth is 40 000 km. So 1Grad is 1/400 of the 40 000km.=100km. Perfect metric division. If your boat moves 100km on the equator, celestrial objects moves 1grad in the sky. If you measure that an object moved 0.1 grad beween two measures (after correction of earth rotation), your boat has just sailed for 10km. Fairly cool, isn't it ?$

  • @The333Daniel
    @The333Daniel Před 4 lety +5

    ill never forget my calculus teacher writing “sin x ≈ x” and asking us to show that it is true in this specific case

  • @karlschoeppner2198
    @karlschoeppner2198 Před 9 dny +1

    I was told 360 was chosen as it has factors of 1 to 12 (excluding 7 and 11) meaning working with common fractions of a circle let us work with whole numbers in degrees.

  • @yuryschkatula9026
    @yuryschkatula9026 Před 4 lety

    Fantastic! The more times the magic "5" is repeated in the denominator, the more zeroes then appear between "18" and next "18" at the fractional part. What a Pi'etic fact!

  • @EnigmacTheFirst
    @EnigmacTheFirst Před 4 lety +115

    A surprising “15 seconds ago” video

  • @panonf.9106
    @panonf.9106 Před 4 lety +7

    Look it's Tim, but smiling!

  • @tramsgar
    @tramsgar Před 4 lety

    Excellent explanations, more Ben pls!

  • @MK73DS
    @MK73DS Před rokem

    Because of the repeating pattern, the error between pi x 10^-k and sin(1/555..55) (with the right k so that the error is minimal), is also very close to pi x 10^-l for some l > k.

  • @alicehancock1
    @alicehancock1 Před 4 lety +4

    Do I see a Klein bottle behind him?
    *Cliff stoll intensifies*

  • @tracyh5751
    @tracyh5751 Před 4 lety +25

    2:22 "But we haven't mentioned a circle anywhere..."
    You literally plugged a number into one of the circle functions.

    • @redpepper74
      @redpepper74 Před 4 lety +3

      Tracy H I love it, I’m going to call them “the circle functions” from now on

    • @Kycilak
      @Kycilak Před 4 lety +4

      Exactly my thoughts. Great minds think alike, I guess.

    • @ZipplyZane
      @ZipplyZane Před 3 lety +1

      Sine is more commonly thought of as a triangle function. There's a reason it's called trigonometry, not circlometry. (A trigon is another word for a triangle. It's like pentagon.)

    • @tracyh5751
      @tracyh5751 Před 3 lety

      @@redpepper74 Thanks, but I'm not the first to call them that. Circles and trigonometry are intimately related.

  • @AWSFan
    @AWSFan Před 4 lety +1

    Excellent relation between pi and 5...Amazing..

  • @ro-ce8vg
    @ro-ce8vg Před 3 lety

    I’ve watched a fair amount of these videos but this was the first one I actually tried figuring it out before watching the explanation and got it

  • @Maniclout
    @Maniclout Před 4 lety +6

    The vinculum, never heard of that one!

  • @givrally7634
    @givrally7634 Před 4 lety +16

    I haven't watched past the 2 minutes mark, but here's my attempt at an explanation. Spoiler alert, probably ?
    Since sin(x) ~ x for small values, I don't think it's in radians, otherwise you'd get something close to 1.8, which, to the best of my knowledge, isn't π.
    Another thing is that 1/(55555...555) is approaching 1/0.555555... multiplied by 10 to some power. 0.555 = 5/9, so the reciprocal will approach 9/5 (= 1.8) multiplied by 10 to some power, or 180 multiplied by 10 to some power minus 2.
    If the calculator is not in radians, it's probably in degrees, so you have to multiply by π/180 to get it right, which cancels to get sin(π times 10 to some power), and since it's getting smaller and smaller, the final answer is getting closer and closer to π times some power of 10.
    Am I right ? I don't know, I'm going to watch the rest of the video now.
    EDIT : Damn right.

  • @abangfarhan1
    @abangfarhan1 Před 11 měsíci +1

    10:08 "they say there's a fine line between a numerator and the denominator" lol

  • @micaelaroyo4837
    @micaelaroyo4837 Před 4 lety

    that was seriously so cool! They should teach these sort of cool trick to kids in high school because many thing that math is boring but if they we're to understand the overall trigonometry, then this would blow their minds

  • @SteveBakerIsHere
    @SteveBakerIsHere Před 2 lety +3

    In the early days of 3D computer graphics we use what we called "brads" (binary radians I guess) which ran from 0 to 256 - handy because an angle fits into a byte and you don't need such big lookup tables for trig calculations - also when you get large angles that go beyond a full circle, you can just chop off the high order bits and the angle is always between 0 and 255.

  • @Fosgen
    @Fosgen Před 4 lety +3

    If you knew the magnificence of the three, six and nine, you would have a key to the Universe.

  • @hades1303
    @hades1303 Před 4 lety

    Omg , I study in secondary school , and really you explain it at a very easy level. Great for encouraging people who hate maths!!

  • @nekogod
    @nekogod Před 4 lety +1

    I would have thought one of the strongest reasons for using 360 is the number of factors it has, 1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,30,36,40,45,60,72,90,120,180,360 which makes dividing up circles much easier.

  • @marksusskind1260
    @marksusskind1260 Před 4 lety +14

    It says 55 comments on this page when I loaded it, but I loaded it half an hour or so ago. 5/9 is zero point repeating-5. 9/5 is a term I use for converting between Fahrenheit and Celsius, so I see 1.8 a lot.

    • @krystofdayne
      @krystofdayne Před 4 lety +2

      Yeah for that Fahrenheit conversion, I use a much more hand over fist calculation. If you want to convert Fahrenheit to Celsius correctly, you would first have to subtract 32 and then multiply by 5/9, so 100°F=[(100-32)*5/9]°C=37.7777....°C. Which is a fairly horrible calculation to do if you just want a quick approximate conversion. So what I do is just subtract 30 and divide by half, so in that case 100°F=[(100-30)/2]°C=35°C. That's close enough to approximately know what sort of temperature range we're talking about.
      And when the temperature gets really high, you can start ignoring the subtraction and just approximately take half to get Celsius. But mostly I use that -30, divide by 2 calculation.
      I guess that could work the other way round too, so to get from Celsius to Fahrenheit, multiply by 2, then add 30.

    • @he1986
      @he1986 Před 4 lety

      I also use 1.8 when converting between knots and m/s. Not so strange then, as knots is tied to the earth’s circumference, or 360 degrees...

  • @harrystephen734
    @harrystephen734 Před 4 lety +9

    the more 5's you add, the more accurate it gets - cool

  • @FlorianLinscheid
    @FlorianLinscheid Před 4 lety

    Holy moly, it's the first time I learned what this Grad thing is, even if I wondered quite often when staring at my calculator. And that 1 radius turn is also a thing we never explicitly learned, although it's pretty clear if you think about it.
    Seems I learned about docking a Dragon and angles today. Good day.

  • @shortcutz6491
    @shortcutz6491 Před 4 lety +1

    Great stuff!

  • @Penrose707
    @Penrose707 Před 4 lety +3

    This professor absolutely reminds me of Russel Crowe.

  • @douglasbrinkman5937
    @douglasbrinkman5937 Před 4 lety +24

    20% off - that's 1/5th off!

  • @harmidis
    @harmidis Před 4 lety

    Ben! Another BIG Numberphile star!

  • @AvalonWizard
    @AvalonWizard Před 4 lety

    This was flipping fantastic.

  • @vishalchandila
    @vishalchandila Před 4 lety +7

    vinculum he says huh

  • @rosiefay7283
    @rosiefay7283 Před 4 lety +4

    "Gradians". Brady let slip the opportunity to suggest Bradyans.

  • @nab-rk4ob
    @nab-rk4ob Před 4 lety

    It's stuff like this that made me fall in love with math in the first place. I had wanted to study math in college but it was not to be, My dad loved it too.

  • @diegofernandez4789
    @diegofernandez4789 Před 4 lety

    Nice and very well explained!

  • @NabeelFarooqui
    @NabeelFarooqui Před 4 lety +46

    My calculator doesn't have the repeating dots :(

    • @AuroraNora3
      @AuroraNora3 Před 4 lety +8

      @@diptoneelde836 It's also a calculator-specific thing

    • @redpepper74
      @redpepper74 Před 4 lety +2

      Hoo Dini So I can’t bring my Texas Institute calculator to Britain and watch the vinculum turn to a couple of dots? Sad 😞

    • @PopeLando
      @PopeLando Před 4 lety +2

      I'm British, and I never heard of the two dots thing before now. I've only seen the bar version.

    • @pierrotinturquoise
      @pierrotinturquoise Před 4 lety +5

      I'm Bangladeshi and I have never heard of the bar thing before now. I am seeing that dots since seventh grade. I think the whole Indian subcontinent uses dots instead of bars. From tea to dots, sometimes I think we are more British than brits.

    • @slolilols
      @slolilols Před 4 lety

      Indians actually use both dots and bars, just the bars are more frequently used. :)

  • @countenanceblog
    @countenanceblog Před 4 lety +5

    About the only real world circumstance of the implicit use of Gradian I can think of is percent grades on roads for steep inclines or declines.

    • @Friek555
      @Friek555 Před 4 lety +1

      Those are not gradians. The percent grades give the slope of the road, that is not the angle. You can convert from an angle to a slope using tan. So 45° correspond to a 100% grade.

    • @Gehr96
      @Gehr96 Před 4 lety +1

      Those are not Gradians. It's just the vertical distance traveled divided by the horizontal distance traveled. If both are the same (45°=50 Gradian incline) you get a factor of 1 = 100%. If you want to convert from percent grade to an angle you need to use the arctan-function.

  • @ggb3147
    @ggb3147 Před 4 lety +1

    As far as I know gradians are commonly (?) used in geodesy and surveying. At least in my country - Poland, but I suppose in other parts of Europe as well.

  • @davidgillies620
    @davidgillies620 Před 4 lety +1

    sin _x_ ~ _x_ for _x_ small is a very useful thing to know. Also, any time you see repdigits, think (10^n - 1)/9 (because 9/9 = 1, 99/9 = 11 etc.). So the exact value for _n_ fives is sin(pi/(100(10^ _n_ - 1))) which goes to sin(pi/(10^( _n_ + 2))) for _n_ large..

  • @hamdoun05
    @hamdoun05 Před 4 lety +3

    I will never be ae to understand what he is sayong after minute 3. Math is so hard man

  • @jesusthroughmary
    @jesusthroughmary Před 4 lety +5

    2:25 "We haven't mentioned circles so far." Lies, sine is a circle function.

  • @SquirrelASMR
    @SquirrelASMR Před 2 lety +1

    Lots of these tricks I've seen where pi comes out magically without circles, but still has had a sine or cosine function, like that bouncing pool ball question giving pi-like colisions

  • @FogToo
    @FogToo Před 4 lety

    I have an old compass from the 70's or 80's with 400 degrees. Was something we used for a short time while in the scouts