Kalman Filter & EKF (Cyrill Stachniss)

Sdílet
Vložit
  • čas přidán 7. 07. 2024
  • Kalman Filter and Extended Kalman Filter (EKF)
    Cyrill Stachniss, 2020
  • Věda a technologie

Komentáře • 65

  • @schen9580
    @schen9580 Před 2 lety +17

    I signed up a similar course in my uni this sem. but the prof. demostrated this interesting content in a terrible way. And Prof. Stachniss you DEFINITELY save my life!!!

  • @sandman94
    @sandman94 Před 29 dny +1

    Thank you, amazing explanation. 👍

  • @weiheng134
    @weiheng134 Před 3 lety +25

    Best explanation about KF & EKF ever!
    Now I finally understand their principles, and their differences.
    I read the Probabilistic Robotics book before, although it is a good reference book for details, it's hard for beginners to understand the concept. Combined with Prof. Stachniss's tutorial, now I understand both from a Big Picture side, and also from the details side.
    Thank you very much for sharing great knowledge.

  • @manishpandit7323
    @manishpandit7323 Před 3 lety +6

    Thanks a lot Mr.Cyrill Stachniss for the video. The best explanation for KF & EKF, by far. It really helps understand it better! Thanks once again.

  • @chaolinshi1816
    @chaolinshi1816 Před 14 dny +1

    very clear explained,thanks

  • @manavendradesai4323
    @manavendradesai4323 Před 2 lety +2

    Great explanation! Thank you for making this video :) Cleared the 'mystery' of EKFs for me.

  • @monteirodelprete6627
    @monteirodelprete6627 Před 2 lety +1

    Thank you so much, my professor's class is totally not comprehensible. You saved me and a lot of students.

  • @jaiswalharsh_
    @jaiswalharsh_ Před 3 lety +1

    Great explanation! Like your lectures very much. Thanks!

  • @Anastasia_loves_may
    @Anastasia_loves_may Před 2 lety +1

    thank you so much for such a structured and clear explanation!

  • @hussienalbared8046
    @hussienalbared8046 Před 2 lety +2

    Thank you so much for the great explanation Prof. The best explanation that someone can imagine

  • @tseckwr3783
    @tseckwr3783 Před 6 měsíci +1

    Thanks for the great video.

  • @Andrew-yr6ig
    @Andrew-yr6ig Před 2 lety

    Great explanation! Thank you so much!

  • @nikosargyropoulos4001
    @nikosargyropoulos4001 Před 3 lety +3

    Thank you for all your videos! They're really helpful and thorough. Keep it up!

  • @muntoia
    @muntoia Před rokem +1

    Muy teso! Gracias por la explicación!

  • @EddieMasseyIII
    @EddieMasseyIII Před 2 lety +1

    An amazing explanation

  • @vasylcf
    @vasylcf Před 3 lety +1

    Thank you, it's really interesting lecture!

  • @wozzinator
    @wozzinator Před 3 lety +7

    I enjoyed your EKF and UKF videos from 2013 and appreciated this video as it taught the EKF in a slightly different way. I would be interested in seeing a UKF version like this video. It may be too niche, but I’d also be very curious about your thoughts on the square root form of the UKF.

  • @pongthanglaishram9413
    @pongthanglaishram9413 Před rokem +1

    best explanation. Thank you

  • @ab-kx4vh
    @ab-kx4vh Před 8 měsíci +1

    amazing explanation! really appreciate your hardwork man
    I hope we can get the slides for home study as well :)

  • @hongkyulee9724
    @hongkyulee9724 Před rokem +1

    Thank you for the good explanation :D
    😍

  • @dustypebble3120
    @dustypebble3120 Před 3 lety +3

    EKF begins at around 44 minutes in !

  • @uniquenessexistence
    @uniquenessexistence Před rokem

    Very clear explanation

  • @chinthauom
    @chinthauom Před 3 lety +3

    Thank you very much for the video. If you can do a lecture on Unscented KF with lie algebra and with manifold, That would be great help...

  • @tapirnase
    @tapirnase Před 3 lety +2

    you are such a great lecturer, i hope you are a prof anywhere :)

    • @CyrillStachniss
      @CyrillStachniss  Před 3 lety +2

      Yes I am at University of Bonn: www.ipb.uni-bonn.de/

    • @tapirnase
      @tapirnase Před 3 lety

      @@CyrillStachniss really crazy, i am studying in aachen. congratulations to excellence!

  • @teetanrobotics5363
    @teetanrobotics5363 Před 3 lety +3

    Could you please add the new videos to their respective playlists. It becomes harder to track later on

  • @AdakuAmaka6252
    @AdakuAmaka6252 Před 2 lety +2

    Excellent Lecture! Best explanation of Kalman Filtering! Continue doing great work Prof! Do you offer online classes or mentoring?

  • @amarnathkatta7783
    @amarnathkatta7783 Před 3 lety

    Thank you very much for the video.Sir could you please add new video of underwater target tracking using EKF.

  • @hl-qz1ec
    @hl-qz1ec Před 2 lety

    56:52 What would I do in case of non-smooth non-linearities, e.g. because of physical limits of state variables in my system dynamic? Just approximate them by a smooth-function?

  • @eccem92
    @eccem92 Před 3 lety

    Thank you for these videos they are really helpful. You mentioned that python will be used in homeworks but i can not find the homework assignments anywhere. Is there any way I can reach to homework assignments?

  • @hl-qz1ec
    @hl-qz1ec Před 2 lety

    13:15: Why is it u_t and not u_{t-1} in the discrete state space model? Wouldn't you have to take into account the control command at the previous time step, not the current one?
    Thanks for the great videos and explanations!

  • @obensustam3574
    @obensustam3574 Před 6 měsíci +1

    Robotics superstar Cyrill Stachniss

  • @csaracho2009
    @csaracho2009 Před rokem

    “Gaussian” in the sense explained would be understood as “well behaved”, meaning that if your “vehicle” is in the middle of a storm, non linearities come in and controls may not work as intended.

  • @RizwanAli-jy9ub
    @RizwanAli-jy9ub Před 3 lety

    thankyou sir

  • @kameelamareen
    @kameelamareen Před rokem +1

    Wonderful lecture but I have a question regarding the part where we assumed Qt is very small , hence the posterior state estimate is the Observation. How would we know that the observation is perfect ? Does it mean that we sample various measurements and calculate the covariance of there measurements , or is it generally assumed to be constant ?
    Because it would make sense that environmental changes affects the Q ? So how is it done in practice ?

    • @priyanshugarg6175
      @priyanshugarg6175 Před 11 měsíci

      Hi. Are kalman filters used for sensor fusion or localization ? I am new to this field.

    • @kameelamareen
      @kameelamareen Před 11 měsíci

      @@priyanshugarg6175 I would say both , an application for Localisation is EKF-SLAM , where you predict the next landmark positions and compare them with actual observation, effectivky optimising for the Robots position in the created map.
      As for sensor fusion , I have not applied that or reach about it but Kalman filter is quite famous for that field too , like looking at one way of deriving the Kalman Filter Equation was to find the optimal mix of 2 readings with diff precisions

  • @guidosalescalvano9862
    @guidosalescalvano9862 Před 3 lety +1

    Do you obtain A B and C through regression?

  • @PowerON-Tech
    @PowerON-Tech Před rokem

    At 46:56 you show the mapping of the Gaussian distribution using a linear function. I would just like to point out that the new function shown on the left is the mirror of the original function. For example, the part of the original Gaussian that is to the right of the average, is below the average, meaning that y-axis of the new distrubution should run from high (5) at the bottom and low at the top. Same applies to the next slide with the non-linear function. If the gradient of the linear function is positive, this mirroring does not occur, but of course with a non-linear function the gradient and be negative and positive.

  • @romitjivani4367
    @romitjivani4367 Před 2 lety +1

    Two best Prof. ----> 1) Michel Van Biezen 2) Cyrill Stachniss.
    Folks add your fav. Prof. in Comment, so that everyone get privilege to know them.
    Lots of love

  • @guidosalescalvano9862
    @guidosalescalvano9862 Před 3 lety

    Isn't the multivariable input/output "Jacobian" described at 52:37 called the Hamiltonian by most mathematicians?

  • @romitjivani4367
    @romitjivani4367 Před 2 lety

    Now I understood after 45.00 that If we are taking count an angle in System then EKF will be a good option but If we are predicting for example state of Vehicle, then we need to use Kalman? correct me if I am wrong. Thank you Prof.

  • @henokwarku8123
    @henokwarku8123 Před 3 lety +1

    Thank you professor, it was really amazing explanation with deep concept that I can use for my problems.
    I want to ask one question, for example if we have a function with high non-linearity, is it possible to localize mobile robot using EKF by increasing the number of sensors? And if there is any book that can guide for the implementation of systems using MATLAB, would you recommed it please?

    • @dhruvbhargava5916
      @dhruvbhargava5916 Před rokem

      not a 100% sure, but I think if more of the same sensors(for example 2 magnetometers one at the front one at back) can reduce the uncertainty for the observation(in this case heading angle), then the new belief should be more dependent on the observation so error introduced due to the prediction would be reduced as it has less contribution in the final update, therefore it should make the overall estimate better compared to using observation from a single sensor of a kind.

  • @Ajay-xd7zq
    @Ajay-xd7zq Před 3 lety +1

    Thank you for the video
    I am currently using the book "Probabilistic Forecasting and Bayesian Data Assimilation - by Sebastian Reich" for studying derivations. Can you please suggest any other book to understand deeper mathematics and derivations related to Bayesian Inference and Data Assimilation

  • @buketkaraoglu683
    @buketkaraoglu683 Před 2 lety

    Hi, i'm working implement extended kalman filter. But i have problems. İ'm trying extended kalman filter in 3 dimension(x,y,z positions). and visulation is simple just use matplotlib. Can anybody know that how can i do? Any resourse or sample?

  •  Před rokem

    Hello professor, the equation f(x) = A x + b is non-linear, because it does not obey the superposition principle.

  • @talibtech1906
    @talibtech1906 Před 2 lety

    NYC

  • @romarpv
    @romarpv Před 2 lety

    At time 16:46 it was missing to write the dimensions of the variables Et and ðt. Am I correct?

    • @CyrillStachniss
      @CyrillStachniss  Před 2 lety

      One is the noise part for the motion the other for the observation, thus the corresponding dimension

  • @galileo3431
    @galileo3431 Před 2 lety

    I have now watched the complete part of the linear KF. What I don't understand is, how are the matrices A, B and C determined/calculated in the first place. Could someone help me out? :)

    • @CyrillStachniss
      @CyrillStachniss  Před 2 lety +1

      A and B describe how your robot/vehicles moves and C specifies how your sensors works. Thus, A, B, and C are robot-specific and need to be defined by the user.

    • @galileo3431
      @galileo3431 Před 2 lety

      @@CyrillStachniss Thank you very much!

    • @dhruvbhargava5916
      @dhruvbhargava5916 Před rokem

      @@CyrillStachniss can A change at each time step? as you stated in the example A can encode information about wind speed for the case of UAV, I assume the predictive model can update it based on sensor information? Thanks for the lecture professor!!

  • @chasko9372
    @chasko9372 Před měsícem

    So is the initial input to both the KF and EKF the gaussian pdf functions or what else?

    • @CyrillStachniss
      @CyrillStachniss  Před měsícem

      Yes, you initial belief is Gaussian (but can have a high uncertainty/variance)

  • @xyzzy4567
    @xyzzy4567 Před 3 dny

    I think the main take away is that everything is Gaussian and stays Gaussian!

  • @kelumsenaka4146
    @kelumsenaka4146 Před 2 lety

    Is it possible to get lecture slides?

    • @CyrillStachniss
      @CyrillStachniss  Před 2 lety +1

      Yes, send me an email and I will send your the PPTX files

  • @mohammadhaadiakhter2869
    @mohammadhaadiakhter2869 Před 8 měsíci

    What do we mean when we say linear model at 7:41?

  • @sELFhATINGiNDIAN
    @sELFhATINGiNDIAN Před měsícem +2

    No