Video není dostupné.
Omlouváme se.

Understanding what is Thermal Conductivity?

Sdílet
Vložit
  • čas přidán 29. 06. 2014
  • A short introduction by Dr. Jack Josefowicz on understanding what is "Thermal Conductivity", how it works, and why it is important in material engineering and development.
    See also: • 2013 Video: C-Therm T...

Komentáře • 36

  • @annaelastocon2713
    @annaelastocon2713 Před 7 lety +12

    I love this explanation, it is just perfect! Simple to understand, thank you so much!!!

  • @sharonrose339
    @sharonrose339 Před 2 lety +1

    Very clear and precise. Exactly what I needed for school. Thank you so much!

  • @paulpease1788
    @paulpease1788 Před 4 lety

    Just found this and the one on effusivity. Thank you so much. It's often difficult to explain to people what you intend the end result to be without using the human senses as examples and you've helped me do that

  • @1973jdmc
    @1973jdmc Před 7 lety +1

    Thank you so much for a clear and concise presentation. Very thankful.

  • @tes767
    @tes767 Před 4 lety

    Thanks for your very good explanation of thermal conductivity and how molecular structure plays a big role.

  • @nanatv1507
    @nanatv1507 Před 3 lety

    Excellent explanation, easy to follow. Thank you!!

  • @adzer45
    @adzer45 Před 8 lety +6

    This was absolutely brilliant!

  • @balbulk
    @balbulk Před 9 lety +10

    this was really really good and helpfull, thanks alot :)

  • @zoroonepiece9210
    @zoroonepiece9210 Před 7 lety

    I like this presentation. It's informative and helpful. Thanks.

  • @MrKSW2000
    @MrKSW2000 Před 5 lety

    Thank you, i was searching for that and you delivered clear and understandable answer

    • @adamharris6969
      @adamharris6969 Před 5 lety

      Dr. Josefowicz does a great job explaining it.

  • @ryananthony8543
    @ryananthony8543 Před 6 lety

    Really good explanation!

  • @rodgalloway6340
    @rodgalloway6340 Před 8 lety +1

    Yes, nice job.

  • @engr.md.ashrafulislam757

    Thank u sir.its helpful

  • @ma.antonethguigue3353
    @ma.antonethguigue3353 Před 2 lety

    Thank you so much sir :)

  • @danieldanieldadada
    @danieldanieldadada Před 6 měsíci

    This was great. And now the question: why do atoms start vibrating with heat?

  • @sambreena
    @sambreena Před rokem

    Very informative.....keep doing the good work

  • @molihuaaa
    @molihuaaa Před 3 lety

    This is a very interesting and very clear explanation, we know that Ti and Al are metal but TiO2 and Al2O3 are oxide-based materials, what is the microstructure looks like and how these two materials transfer the heat? Thanks, Dr. Jack

  • @muneerabegummohamediqbal8267

    Can someone help me out here. I don't major in physics. However, does this mean that the thermal conductivity of a material (poor or good conductors) is also dependent on their structural formation?

    • @harshitrajput6865
      @harshitrajput6865 Před 2 lety

      Yes, that's also what dr. Is trying to convey in the video. It greatly depends on molecular arrangement. Diamond for example, is an excellent conductor of heat because of its highly orderly arrangement of molecules.

  • @genericjesus8803
    @genericjesus8803 Před 6 lety +1

    very interesting and helpful, thanks. Isn’t diamond the best thermal conductor

  • @colinburrough5621
    @colinburrough5621 Před 9 měsíci

    The m in the units of W/m·K refers to the thickness but surely the area of transmission is a component too. Is it to be assumed that we are measuring the heat flow in a unit area. If this were so, shouldn't the units be W/m·K/sq.m

  • @ggmoneylol
    @ggmoneylol Před 4 lety

    You're amazing

  • @aksshaysharma96
    @aksshaysharma96 Před 6 lety

    why is it that if we heat a coil it reduces electricity?

  • @yuan_tu
    @yuan_tu Před 6 lety

    This video talks the difference between crystalline solids and plastics. However, the case of metal is different with other solids because of free electrons, which also plays an important role in thermal transport, in particular at high temperature. That is why thermal conductivity of metal is higher than other solids, such as diamond?

    • @VivekSSingh-kw4xj
      @VivekSSingh-kw4xj Před 4 lety

      Ye na u r right but in general thermal conductivity of crystalline material is higher than that of amorphous solid.

  • @paulpease1788
    @paulpease1788 Před 4 lety +1

    I do have one question. There are a few materials now that have a high thermal conductivity along (example) their x,y axis but it is a huge difference along the z axis. How can you explain that to people.

    • @CTherm
      @CTherm  Před 4 lety +2

      Great question Paul. Anisotropy in thermal conductivity can have a number of different causes: It can be an inherent property of the crystal structure of a pure crystalline material (such as in graphite, sapphire, or boron nitride sheets). Sometimes, it can be a result of the manufacturing of an amorphous or semi-crystalline material (many polymers, for example, exhibit anisotropy in thermal conductivity when they have been extruded due to the extrusion’s orientation of the polymer chains). And sometimes it has to do with the orientation of high-conductivity components of a mixture or composite system (for example, often filled polymer composites have high-conductivity fillers with large aspect ratios - such as carbon nanotubes - which conduct heat very efficiency along their length but can’t pass heat as well through the polymer matrix).
      In the case of crystalline materials, the difference is due to the difference in phonon transmission efficiency along the different axes of the material. In the case of non-crystalline long-chain materials, like polymers, it’s to do with chain organization: heat transmits more efficiently along a chain than between chains - and therefore if the polymer chains exhibit some degree of organization, the thermal conductivity will be higher in the direction that the chains tend to be oriented towards. In the case of composites, it is due to more efficient heat-transfer along the filler materials than through the matrix.
      Hope that helps!

  • @mikakorhonen5715
    @mikakorhonen5715 Před 5 lety

    So in plastic heat has promlems to go from up -> down, but in metal it goes easily from left -> right. Thumb up if I got this right.

  • @user-fm3fr2co4o
    @user-fm3fr2co4o Před 3 lety

    It looks like he is standing on a stage and the white board is far i cant unsee that

  • @fractalnomics
    @fractalnomics Před 4 lety

    3:36 If the metal is shiny the emissivity will be very low and so will not absorb much radiation at all - at least it shouldn't.

  • @anbuakanbuak3294
    @anbuakanbuak3294 Před 5 lety

    Hi

  • @sendoprey
    @sendoprey Před 7 lety

    You needed to edit the audio using a filter

  • @M.T....
    @M.T.... Před 3 lety

    I'm happy to see that Gustavo Fring left a life of crime behind and is now teaching material science.

  • @crazzetrain
    @crazzetrain Před 4 lety

    woah I didnt know John Malkovich was a scientist

  • @chaser1242
    @chaser1242 Před 9 měsíci

    Isn't this the dude from Breaking bad?