3D Printed Turbo Impeller VS Dyson Motor

Sdílet
Vložit
  • čas přidán 12. 06. 2023
  • Thanks to PCBWay for sponsoring this video! Get your custom PCBs here: www.pcbway.com/?from=rctestfl...
    Create a free Onshape account: onshape.pro/rctestflight
    CAD models: cad.onshape.com/documents/7c0...
    Learn more about Formlabs and the Form 3+ here: formlabs.com/company/innovato...
    Follow rctestflight on IG: / rctestflight_
    Support rctestflight: / danielriley
    Join my discord server to talk about building stuff: / discord
  • Věda a technologie

Komentáře • 716

  • @Cen.Reaper
    @Cen.Reaper Před 11 měsíci +1075

    The fact that you can actually 3D print an impeller rotating at such a speed with a plastic is insane

    • @FilosophicalPharmer
      @FilosophicalPharmer Před 11 měsíci +13

      Makes me dizzy thinking about it

    • @nocare
      @nocare Před 11 měsíci +33

      You might find polymers such as PEEK interesting.
      It's a super polymer usable in 3d printers with a usable part temp of 482 F and a melting point of 662 F
      Your average hobby soldering iron doesn't even get hot enough to melt this plastic. It has a tensile strength comparable to some types of steel.

    • @Hughjanus720
      @Hughjanus720 Před 11 měsíci +12

      @@nocare good luck printing that with a 3D printer at home…..

    • @nocare
      @nocare Před 11 měsíci +12

      @@Hughjanus720 You can, you just needed one with a heated chamber and a high temp hot end.
      And ender 3 can literaly print peek if you mod it.
      You will only get the less capable amorphous peek unless your chamber can break 113 C which gets you crystalline peek.
      That takes water cooling though so most printers can't do crystalline.

    • @Hughjanus720
      @Hughjanus720 Před 11 měsíci +5

      @@nocare I could build a whole car at home too, just don’t think it’s worth it

  • @matthewnardin7304
    @matthewnardin7304 Před 11 měsíci +1371

    The dyson's impeller is used in a vacuum that sucks up dust and the one this guy made creates dust and efficiently spreads it around everywhere.

    • @AnIdiotwithaSubaru
      @AnIdiotwithaSubaru Před 11 měsíci +92

      Fresh micro-plastics for your lungs 🤤

    • @AbsolutionArmament
      @AbsolutionArmament Před 11 měsíci +57

      The world requires balance.

    • @rawhidelamp
      @rawhidelamp Před 11 měsíci +38

      Anti-dyson expeller

    • @Jacon95
      @Jacon95 Před 11 měsíci +8

      and the circle closes

    • @Arek_R.
      @Arek_R. Před 11 měsíci +2

      @@AnIdiotwithaSubaru ??? There is hepa filter at the end

  • @Micharus
    @Micharus Před 11 měsíci +367

    For balancing rotating parts like the impeller, you could use the method my father used to balance his model aircraft propellers. He had a shaft the size as the center hole in the propeller. The shaft came to close to a needle point on either end and was carefully balanced at either end on a metal plate so that it would spin as freely as possible. The propeller was then gently spun and allowed to come to a rest. If the propeller ended up one blade down, that blade was marked and spun again to see if the same blade ended up pointing down. If was the same blade again on the next try, a little was shaved from the end and the whole process repeated until it seemed to be random as to which blade was pointing down.

    • @boomjeep99
      @boomjeep99 Před 11 měsíci +6

      Wonder if ya.could use water to float it check for lower/higher side

    • @Cen.Reaper
      @Cen.Reaper Před 11 měsíci +15

      That's how to balance everything that rotates actually

    • @conorstewart2214
      @conorstewart2214 Před 11 měsíci +20

      That only balances the weight, not the thrust and this impeller is that small that the weight imbalance would be tiny, you would struggle to find anything low friction enough to do the test the way you described.

    • @lightningdev1
      @lightningdev1 Před 11 měsíci +5

      @@lukearts2954 honestly his comment is not even close to ChatGPT-levels of unhuman writing. I'd be surprised if ChatGPT or similar wrote that without some prompt engineering

    • @gtjack9
      @gtjack9 Před 11 měsíci +8

      @@lukearts2954 It wasn’t chat GPT, I’m just neuro divergent and struggle to organise a coherent sentence 😂

  • @RobisonRacing68
    @RobisonRacing68 Před 11 měsíci +203

    Ya know Daniel, I've been subbed to you for a really long time. You were a kid back then and your videos were kind of cute. Kid makes cool things out foam cuz he is a kid and has no money but here we are all these years later and honestly you are a true gift. Everything you make is interesting even your ad/sponsor parts of videos. So I just want to say thank you for all you do.

    • @amogusenjoyer
      @amogusenjoyer Před 11 měsíci +7

      This is such a nice comment. Awwww!!

    • @bAc0nBoY755
      @bAc0nBoY755 Před 11 měsíci +3

      wholesome comment

    • @28th_St_Air
      @28th_St_Air Před 11 měsíci +3

      Likewise. I’ve been watching him since he was destroying things in his parents garage and neighborhood. Very entertaining. I wish I had even half the fabrication knowledge he has learned over the years.

    • @sicklad3277
      @sicklad3277 Před 11 měsíci +1

      Always amazed me as to how he could glue a few bits of foam together and have such a good flying rc plane

    • @Mattle_lutra
      @Mattle_lutra Před 11 měsíci +1

      I also love how he lets shit blow up and scuff his hand, but doesn't care and goes on with the project. It's aerospace grade chaos, no drama!🤣

  • @iteerrex8166
    @iteerrex8166 Před 11 měsíci +114

    Knowing a little about high rpm’s, it is ALLL about balance. It’s quite impressive to get such results in a home lab setting 👍

    • @mindaugasplauska5781
      @mindaugasplauska5781 Před 11 měsíci +2

      it's not quiet , it's loud and impressive nonetheless , i see u man have understanding gut in you big balls , basketballs i mean

    • @KingSkrap
      @KingSkrap Před 11 měsíci +1

      Bro turbo’s his vacuuum

    • @sigmamale4147
      @sigmamale4147 Před 11 měsíci

      @@KingSkrap bro should put a mini v12 in his vacuum

  • @PCBWay
    @PCBWay Před 11 měsíci +110

    This is really SOMETHING! Thanks soo much for bringing us this, Daniell🥳🥳🥳

    • @bjrn-oskarrnning2740
      @bjrn-oskarrnning2740 Před 11 měsíci +8

      Psst! If your injection molding is accurate enough, maybe you could make him some more balanced impellers? Or even machine some out of aluminum or another metal?

    • @AnIdiotwithaSubaru
      @AnIdiotwithaSubaru Před 11 měsíci +9

      @@bjrn-oskarrnning2740 An aluminum impeller sounds pretty sick

    • @ivangutowski
      @ivangutowski Před 11 měsíci +1

      it's insane what your company offer :)

  • @Vousie
    @Vousie Před 11 měsíci +35

    You certainly have Dyson beat in the "explosive potential" category. 😂
    The moment you talked about the close clearance and high RPM, my first thought was "it's about to explode".

  • @Uberwald93
    @Uberwald93 Před 11 měsíci +30

    I used to do motor R&D for Shark Vacuums. Your rate of improvement is great and watching this took me back to some of my favorite engineering. Love your work.

    • @Uberwald93
      @Uberwald93 Před 11 měsíci +3

      Gotta do your velocity triangles and angular momentum flux conservation.

    • @ExplorinDoranRBrown
      @ExplorinDoranRBrown Před 11 měsíci +1

      I appreciate your work at Shark. Impressive power from my Shark!

    • @sadiporter2966
      @sadiporter2966 Před 4 měsíci

      shark motors die so soon compared to dyson :(

  • @zmuse
    @zmuse Před 11 měsíci +39

    The motors seem to need a thrust washer/bearing as the axle seems to be pushing out which pushes the impellor into the house. You can see 13:00 after the impellor explodes that the axle retracts when the motor slows.

    • @aycentroid
      @aycentroid Před 11 měsíci

      Was just about to mention that, he's got a lot of thing's to fix to make something remotely long lasting/usable

    • @41A2E
      @41A2E Před 11 měsíci +3

      I could be wrong, but I don't think the shaft moved it was the nuts spinning down from the inertia.

    • @shakeit995
      @shakeit995 Před 11 měsíci

      @@41A2E true, the shaft never moves only the nuts. Zoom in to make it easier to see

  • @paulogden7417
    @paulogden7417 Před 11 měsíci +25

    Daniel this is some awesome engineering! Love your iterations and fearless testing. And your very well rounded skills in Cad and 3D printing. Your steadily increasing physics, systems and shop knowledge help you to quickly recover and test new ideas. Love it, man!

  • @Teth47
    @Teth47 Před 11 měsíci +28

    The Dyson vacuum motor is aurally a little different from a typical brushless motor. It is a switched reluctance motor if I remember right, they are good at reaching insane speeds.

    • @disp3rsion
      @disp3rsion Před 11 měsíci +1

      yeah. surprised he got something as basic as this wrong

    • @hOZish7
      @hOZish7 Před 11 měsíci

      But the Dyson motor has a permanent magnet as the rotor so it's not a switched reluctance motor, it's just the same old BLDC

    • @disp3rsion
      @disp3rsion Před 11 měsíci

      @@hOZish7 it has no permanent magnet

    • @poplix2704
      @poplix2704 Před 11 měsíci +1

      @@disp3rsion neodymium magnets are permanent and dyson uses those

  • @ShawnChristopher10101
    @ShawnChristopher10101 Před 11 měsíci +6

    I also think there's something to be said for the plasticity level of the impeller material. After awhile the friction I'm sure causes material warping which expands the impeller and pushes it against the snail housing walls.
    Similar to blasting a skateboard wheel with compressed air/water and it expanding.

  • @hedleypepper1838
    @hedleypepper1838 Před 11 měsíci +10

    Instead of a scroll housing I'd suggest taking the air all around circumference back over the motor for cooling, also exhausting in same direction as intake airflow should give better thrust. Early gets worked this way as do most model gas turbines now

  • @purplepeeps_
    @purplepeeps_ Před 11 měsíci +7

    "digital motor" gotta love the marketing department and their brilliant naming ideas

  • @markthompson5983
    @markthompson5983 Před 11 měsíci +2

    This is EXACTLY what I've been looking for, an insanely high pressure blower fan that I can 3d print cheaply. Thanks!!!

  • @dnomyarg32
    @dnomyarg32 Před 11 měsíci +6

    Great work! It looks like your impeller spins the wrong way for the thread handedness, which if true is the reason for a number of the failures: The impeller is wanting to spin the nut off the motor shaft at higher loads. Easy fix is to print the mirror of the impeller, so that it runs in the opposite direction, and reverse the motor rotation.
    When I have dynamically balanced things in the past, I’ve used a flexible beam (thin long bar of aluminum) that I can clamp up on to vary its length, made a motor mount to attach to it, and put a dial test indicator (DTI) on the free end. Gives extremely precise measurement and repeatability for balancing.

  • @droppedpasta
    @droppedpasta Před 11 měsíci +13

    The higher speed listed for the Dyson is with the inlet blocked. This creates a partial vacuum, which means less resistance on the impeller => higher speed

  • @theepicadventuresinfinity9037
    @theepicadventuresinfinity9037 Před 6 měsíci +1

    you did an amazing job with these kind of things so far. You definitely showed somebody like me who is an engineer about these kind of things how difficult it really is to make these kind of things efficient enough

  • @NicholasRehm
    @NicholasRehm Před 11 měsíci +3

    Dyson fan multirotor seems eerily close to fruition 😮

  • @bowieinc
    @bowieinc Před 11 měsíci +3

    Your ability to crank out worthy content is mesmerizing! Thank you!
    It’s my hope it continues to remain more on the enjoy side than the work side for you:)

  • @haphazard1342
    @haphazard1342 Před 11 měsíci +10

    Your turbine impeller exploding is due to unbalanced parts and large tolerances on the interfaces. You need to do two things to address this: 1) balance the rotating assembly, and 2) ensure that there is no movement of the impeller on the shaft.
    1) is relatively easy: you construct a balancing spindle as described by another commenter. A precision shaft that the impeller mounts to, which tapers to needle points on both ends. The unit is suspended between angled plates, allowing it to spin freely. Then the whole assembly is spun and the downward facing blades marked. Repeat this cycle to ensure that the same blade is heavy, and then shave until the blade down is not repeatable.
    2) is harder because of the materials you're working with and the parts. The threaded shaft on the motor is the main problem. Even if you print a tight fit on the impeller, if it is unbalanced at all then the forces will be amplified by the extreme rotation and cause the plastic to dig into the threads of the shaft, thus introducing slop. This slop allows more movement which allows more vibration and more slop until the whole thing goes boom. To eliminate this, you will need to sleeve the shaft with a hard metal (not brass or copper or aluminum, regular steel should be fine doesn't need to be hardened), and then bring your impeller bore to final size using a reamer instead of relying on the printers finish. Be sure to do the reaming before balancing. You may want to press in a hard bushing/mount on the impeller instead of sleeving the shaft, but again take care to ensure a very close fit on the shaft.
    You can keep using the nut clamp system, just under size the length of the sleeve so that the nuts still clamp the impeller directly. If you're using washers, you need to ensure a tight tolerance on the washers and consider balancing them as well.
    A final practical matter is airflow and cooling: you probably want to direct airflow over the motor for cooling. This will probably cost some thrust, but is critical for motor longevity especially at the high power levels you are using.
    Looking forward to the next installment!

  • @cornIDsign
    @cornIDsign Před 11 měsíci

    Last year in my design internship at a quantum cooling startup I got introduced to onshape. Coming vom Rhino7, which of course has so much functions and his hard to master, I quickly found a liking to onshape. The fact, that you can open, view and edit your file from almost any device from anywhere you can imagine because it's cloud based is so tremendous. Plus in a company you can manage projects and put single files together in a huge asssembly is amazing.
    The company also had formlabs Form3+ printer. Its a gamechanger compared to my own ender 3v2. No hazzle, no tweaking. The print always came out perfect and smooth.

  • @That-fellar
    @That-fellar Před 11 měsíci +911

    Today we are going to see how loud, inefficient, and unreliable we can make an impeller

    • @28th_St_Air
      @28th_St_Air Před 11 měsíci +135

      Some of us learned about how Dyson motors are designed, ways to measure thrust and vacuum pressure with basic metering devices, and what it takes to 3D print and manually balance impellers that are spun at high RPM. Others just enjoyed seeing Daniel blow stuff up.

    • @That-fellar
      @That-fellar Před 11 měsíci +10

      @@28th_St_Air the 3rd one for me

    • @FilosophicalPharmer
      @FilosophicalPharmer Před 11 měsíci +9

      @@28th_St_Air I did both. 🤷🏻‍♂️

    • @jeffh8803
      @jeffh8803 Před 11 měsíci +22

      "Sucking at something is the first step to being sorta good at something." Winston Churchill

    • @FilosophicalPharmer
      @FilosophicalPharmer Před 11 měsíci +18

      “Experience is what you get right after you needed it.” - Me

  • @matthewprather7386
    @matthewprather7386 Před 11 měsíci

    I like that you're willing to take things you've worked hard on and test them to destruction.

  • @astertesema580
    @astertesema580 Před 2 měsíci

    Thank you for doing what you do never stop making these videos.

  • @hattonz5275
    @hattonz5275 Před 11 měsíci

    Really cool video. Thank you for sharing the cad file, was cool and helpful to look through and see how you made the it, especially the blades. : )

  • @harmonic5107
    @harmonic5107 Před 11 měsíci +2

    It's fun to see how you and great scott differ in procedure. The hammer to open it in particular 😄

  • @colbyjohnson2344
    @colbyjohnson2344 Před 11 měsíci

    How cool. You are one of the few show ng how functional prints can be used for a myriad of applications. Well done keep it up
    I want to see lawn mower v2

  • @Mycatisinapiano
    @Mycatisinapiano Před 11 měsíci

    This video had some really cool shots!

  • @folarindavies
    @folarindavies Před 11 měsíci

    Ive been wanting to make one of these for a project, this is amazing

  • @Galileocrafter
    @Galileocrafter Před 11 měsíci +6

    The reason why they are using only 2 pole pairs is likely also due to the electronic commutation limit. With an excess of 100000 rpm many cheaper controller are not capable of commutating motors with a high pole pair count. 100000 electronic communications a second is a common limit of those controllers.
    And because they practically have no load on the motor, it’s forgivable to only have two pole pairs.

    • @AABB-px8lc
      @AABB-px8lc Před 11 měsíci +1

      no, it is rare used SRM motor with quadrature sequence, very neat design for robust very high RPM cases en.wikipedia.org/wiki/Switched_reluctance_motor

    • @Galileocrafter
      @Galileocrafter Před 11 měsíci

      @@AABB-px8lc Fair enough, no magnets for the rotor, makes it a bit cheaper. And with the volume of motors they need to produce it's probably a good move. You'd still ned electronics for commutation though.

  • @mannythehunter
    @mannythehunter Před 11 měsíci

    The fact that it didn't blow up within 5 seconds impressed me!! I don't think I could ever make something spin that fast and not go pop!

  • @Fk8td
    @Fk8td Před 11 měsíci +3

    If you want pressurized air to be more efficient you should check out the inside of a compressor housing on a turbo. They don’t use director blades to force the air in the direction of the outlet to increase velocity. It will help a lot.

  • @ZBroski_
    @ZBroski_ Před 7 měsíci

    I love the how to basic style of deconstruction on the vacuum

  • @arjanvonk786
    @arjanvonk786 Před 11 měsíci

    Amazing, almost feel like putting on some safety goggles just looking at the high RPM testrun.

  • @JohnBMW3xx
    @JohnBMW3xx Před 11 měsíci +1

    You can use air flow meter from the car, to measure air mass.

  • @zdog90210
    @zdog90210 Před 11 měsíci

    I never thought about the axial thrust load on the impeller shaft when it's sucking an air. There has to be a force pushing on the impeller blade. That's awesome

  • @georgeghaly5808
    @georgeghaly5808 Před 11 měsíci

    Vibration is definitely a huge thing to deal with... You have to balance the impeller for static and dynamic vibration... But one more thing to consider is physical expansion due to high centrifugal force... Materials tend to expand at such high RPMs/Forces...so you have to adjust you tolerances accordingly.

  • @outdoorz5283
    @outdoorz5283 Před 11 měsíci +4

    It's easier to remove support material before curing 👍
    Also, using nyloc® nuts for the motor will keep them tight under vibrations

    • @zachbrown7272
      @zachbrown7272 Před 11 měsíci +1

      yep. my recommended workflow is to remove the part from the BP and take off the supports between Wash and Cure.

  • @mdl_reviews3607
    @mdl_reviews3607 Před 6 měsíci

    You can cut down on vibrations a bit by mounting the impeller differently. Threaded rods and nuts are very imprecise, using the nut to center the impeller will result in it being off center and at higher RPMs it will just vibrate like crazy. Minimize the impellers runout (how off center it is) and it will make balancing it much easier.

  • @brandonspears2028
    @brandonspears2028 Před 11 měsíci

    Cool watching your channel grow!

  • @echollis123
    @echollis123 Před 11 měsíci

    Thumbs up for this interesting video. It must be hard to come up with new ideas that hold the interest of the many and this was one that did. Good job.

  • @DefinitelyNotEmma
    @DefinitelyNotEmma Před 11 měsíci +1

    Videos like these and the influence of my dad is why I'm getting into engineering lol

  • @The_DemonKing
    @The_DemonKing Před 11 měsíci +1

    9:29 two birds on a wire, one tr-
    Bird:AAAAAAAA

  • @Sev_Auk
    @Sev_Auk Před 11 měsíci

    Engineering, with comedy, is always the best form of entertainment! Thanks again Daniel, I always enjoy your content. Bye. :)

  • @makismakiavelis5718
    @makismakiavelis5718 Před 11 měsíci

    13:13
    Just look at this beautiful vortex just spiraling in. Forming and dissolving. Nature is so beautiful.

  • @migalito1955
    @migalito1955 Před 11 měsíci

    Cool beans.
    I have 18 partially completed projects, but I think you have me beat in terms of competed & more to come.

  • @HelloKittyFanMan
    @HelloKittyFanMan Před 11 měsíci

    Holy CRAP! The way this first iteration blew itself up was just... my reaction was like, "WHAAAH!"

  • @echobeefpv8530
    @echobeefpv8530 Před 11 měsíci +1

    Really great effort, the balancing of high speed parts seems to need computer accuracy to be successful. Dyson may have a few more people, and a lot more money, to develop these systems, but I LOVE that you gave it a shot !!!

  • @DC-tq6nd
    @DC-tq6nd Před 11 měsíci +6

    Seems like you might have significant losses due to the design of your impeller housing. Normal centrifugal pump housings have a volute that gathers the air flung by the impeller to guide it out of the pump. Your fully toroidal housing might be losing a significant amount of thrust just swirling air around inside... Also, those internal guide vanes probably just represent losses to the airflow coming off the impeller - the angle of the outflowing air should be controlled using blade angle on the impeller, not external vanes. Would be interesting to see the effect a refined housing has on performance!

  • @badvideocamera
    @badvideocamera Před 11 měsíci

    Best ad ever! I wanted some pcbs printed.

  • @shanemeyer9224
    @shanemeyer9224 Před 2 měsíci +1

    I do love this video which is awesome but not quite far to compare thrust on a dyson motor which is strictly designed for being a vacuum and not for pushing air out so its really not a far comparison, but they also are designing it for better battery consumption as well. I am so impressed you were able to make a 3d printed impeller spin that fast without vaporizing, that's incredible

  • @ZA-mb5di
    @ZA-mb5di Před 11 měsíci

    3:10 I got a free sample of formlabs printing capabilities a few years ago.
    It was a sample of filament that can be used for springy things

  • @frankbholle
    @frankbholle Před 8 měsíci

    Amazing!! A question: from which Dyson model you have extracted the motor visible at 11:38? Seems very easy to run with original controller, differently from some other models that are more complicated.

  • @No_Way_NO_WAY
    @No_Way_NO_WAY Před 11 měsíci +1

    The snail housing: i only know of the ones that have a very small outer diameter directly behind the exit (rotation wise). Due to the same diameter much of the air gets just spun around in circle until the centrifugal forces prevent it from making the turn. Hmm... thats probably the diffrence, between max flow or max pressure on the outlet. Yours is probably set up for pressure.
    You can try to balance the impeller statically by mounting it to a thin needle and place that on a post. That should reduce friction and should turn the impeller with the heavy side down.

  • @choahjinhuay
    @choahjinhuay Před 11 měsíci +12

    I can’t imagine the prices of those formlabs resins. How long does 1 Liter go for you? How much did the impeller take?

    • @mundanestuff
      @mundanestuff Před 11 měsíci +4

      $150/L the resins are expensive, but you're only using a few cc's for each print. I'm no resin printing guru, but the tools all have a calculator that you can put the price into, and it'll spit out the volume, and the cost of the part. I'll bet it was a buck or two per impeller? The shell probably $8? Wild ass guesses here.

  • @lukearts2954
    @lukearts2954 Před 11 měsíci +2

    I think you could improve the results with a better snail housing. The radius should increase closer to the exit nozzle. (so the axle of the impeller is eccentric to the housing, while in your design it is nicely centered)

  • @patobanion
    @patobanion Před 4 dny

    Very cool! How did you design the impeller blades and their configuration?

  • @SonShani
    @SonShani Před 11 měsíci

    The howtobasic-style hammering at the beginning made me chuckle :D

  • @diogobranco2745
    @diogobranco2745 Před 11 měsíci

    Another great video, thanks

  • @sinsinner6797
    @sinsinner6797 Před 11 měsíci

    have really enjoyed your videos thus far...cool colab with the plasma channel...

  • @Pscribbled
    @Pscribbled Před 11 měsíci

    Love the pcb way ad read while wearing the on-shape tee-shirt. Hitting two birds with one stone

  • @thebrunolalli
    @thebrunolalli Před 11 měsíci

    Get PCBWay to metal print an impeller for you! Awesome video

  • @OpreanMircea
    @OpreanMircea Před 11 měsíci

    "it's loud, inefficient and likely to explode" you mean it's perfect, thanks for the video!

  • @dougcooper4917
    @dougcooper4917 Před 11 měsíci

    You Are Amazing! Thank You.

  • @simonl7784
    @simonl7784 Před 11 měsíci +1

    2:00 about KV rating: KV is for motor RPM what pitch speed is for a prop:
    when a prop is going at it's pitch speed, it's no longer producing ANY thrust.
    Same with a brushless, if it's going at it's theoretical RPM (KV x Volts) it's no longer producing ANY torque.
    When calculating the useful rpm of your motor, you have to multiply by a 'slip' factor: typically around 0.75 or 0.8 depending on alot of things ; )
    So your motor should give you 118 000 * 0.75 = +- 90 000 RPM

  • @Premier-Media-Group
    @Premier-Media-Group Před 11 měsíci +4

    Looks like it could be a great electric turbo for a car, bike, boat, or lawn motor...
    Also, what a sexy 3D print project!

  • @sobertillnoon
    @sobertillnoon Před 11 měsíci

    I have that exact same wet/dry vac!

  • @Quackerdax
    @Quackerdax Před 11 měsíci

    Could you anchor the open end of the motor shaft to reduce vibration? or would that negatively effect airflow too much?

  • @VR46Monster
    @VR46Monster Před 9 měsíci

    you can use high speed camera for balancing of the rotor. make a few marks that will be distinguishable when spinning and you can just chase the mark that oscilates the rotor furthest.

  • @IsaacNewtongue
    @IsaacNewtongue Před 11 měsíci

    I used to work in a Turbo shop, and you can properly balance an impeller with a prop balancer. You would know the ones: they magnetically levitate the Prop/fan on a shaft for almost zero friction. Grab one of those to balance your impeller!

  • @newtypeJP
    @newtypeJP Před 11 měsíci

    this is so insane lol. love it . your content is always next level

  • @zeoverlord
    @zeoverlord Před 11 měsíci +1

    One way of using the dyson impeller is making something more like a jet engine, you might get more of a ram effect and air multiplication if the exhaust is made right

  • @toolbaggers
    @toolbaggers Před 11 měsíci

    You also need to weigh the external ESC when calculating thrust to weight since the Dyson has a built in ESC.

  • @mariemccann5895
    @mariemccann5895 Před 11 měsíci

    Awesome work.

  • @IMCABLETV
    @IMCABLETV Před 3 měsíci

    You could probably use a bearing closer to the impeller. In the car world we would use a run out dial indicator and make sure the back side and all the tips of the blades are spinning within .001 and if your outside rear edge and all the tips of the blades are running at .001 it should be balanced. Adding hot glue will interfere with the blade effectiveness so just try taking of smooth layers on the meat or within the central part on the back of the impeller to balance just a lot of back and forth on the micrometer

  • @thomasvennekens4137
    @thomasvennekens4137 Před 3 měsíci

    why did you make the snails inner diameter constant ? it normally progresses from smaller to larger till equalling its output diameter ?

  • @OpreanMircea
    @OpreanMircea Před 11 měsíci

    your videos are a treat

  • @jsayol
    @jsayol Před 11 měsíci

    "I used the built-in lathe" got a good chuckle from me. I'm still watching, just wanted to mention this.

  • @jo.v-c
    @jo.v-c Před 11 měsíci

    "It is loud, inefficient, and it is likely to explode." I think with that you've offically crossed the line into Mad Science.

  • @ahmednasrulla4766
    @ahmednasrulla4766 Před 11 měsíci

    You can actually rig a mobile phone to the mount to test the vibrations in IPS with an app. It's super sensitive so might help with balancing

  • @supergeek02468
    @supergeek02468 Před 11 měsíci +2

    "The built in lathe" 🤣🤣🤣

  • @feelincrispy7053
    @feelincrispy7053 Před 11 měsíci

    I never could figure out Kv. This cleared up years of confusion lol

  • @christopherr8441
    @christopherr8441 Před 11 měsíci +1

    8:13 “This video is sponsored by PCBWay” he says while wearing an Onshape shirt

  • @raphaelcoti692
    @raphaelcoti692 Před 11 měsíci

    They use 4 coils and a hall effect sensor for multiple reasons :
    1- ensure the right rotation way of the motor and so of the impeller : they need the position of the rotor (not necessarily precisely) and then they will start only two of the coils to be sure of the rotation way, then inertia and the hall effect sensor take the relay i guess or maybe they just use two coils when the magnets of the rotor are closed to their end position, better see with a scope to be sure haha…
    2- the hall sensor as in three phased esc is used to have feed back and so send the rights pulses at the right moments to have a stable torque ans so make their product less louder.
    But in the end for a 2 phased motor to work you don’t need all this, you’ll just won’t know the rotation way and the position of the rotor so you will just need to respect the KV rating to make it work

  • @ashtonbrown4318
    @ashtonbrown4318 Před 11 měsíci

    Congratulations on getting 3 different sponsors in one video

  • @serta5727
    @serta5727 Před 11 měsíci

    Wow Never new that pcbway could Machine big parts

  • @75keg75
    @75keg75 Před 11 měsíci

    Check Tony Moira resin ratios for strength flexibility etc. also check putting some fibers into resin vat to or layering on outside and paint resin to outside of housing prior to curing.

  • @stimpyfeelinit
    @stimpyfeelinit Před 11 měsíci

    that engineering resin is awesome, didnt know that was a thing

  • @thomasschulz2167
    @thomasschulz2167 Před 11 měsíci

    A better way to radially balance the impeller is to set up a set of parallel bars the are on the same plane that are level. Run a straight and true rod all the way through the impeller and place on the parallel bars. Nudge it to get it to roll. When it stops the heaviest side will be towards the floor. Grind a little off and repeat until the impeller doesn't come to a definitive stop, it just seems like it wants to keep rolling. At that point you'll have a balanced impeller that didn't require some special electronics set up.

  • @fluiditynz
    @fluiditynz Před 8 měsíci

    Was the static vane layout in the snail housing native to the Dyson? I've always thought that would make a good experiment to build pressure in a centrifugal, it should permit nozzle restriction to load the motor within it's heat handling ability

  • @borderm3
    @borderm3 Před 11 měsíci

    You can measure rpm with inductive pickup and fft on one of the 3 phases

  • @p39483
    @p39483 Před 11 měsíci +1

    Dyson uses a reluctance motor according to my research. Rather than permanent magnets, the rotating core just has a magnetic material like iron that seeks to center itself in a magnetic field. It works like a familiar linear solenoid but in rotation. There is no field reversal in the iron so this supposedly gives an RPM advantage.

  • @mediumsmoke7823
    @mediumsmoke7823 Před 11 měsíci

    Would be really cool if you made a vacuum or a „thruster“ like in this video but with an impeller from a turbocharger. May be pretty cool and silent. The vz21 turbo is very small. You could get a pre balanced aluminium impeller from it and make good use of it.

  • @dmickey1000
    @dmickey1000 Před 11 měsíci

    Pretty darn cool stuff. May I ask what computer program that is at 3:12 that shows the supports?

  • @dominicgarcia85
    @dominicgarcia85 Před 2 měsíci

    If you scaled up a little could that be a plausible electric turbo for a small four cylinder ice ? Like a Mazda protege for example

  • @laurenceturner9346
    @laurenceturner9346 Před 11 měsíci

    Make yourself a sealed box with two holes.. About 40cm cube. Attach the vacuum to one side, then various flat plates to the other with different size holes in say 10mm to 100mm . You can then map the pressure drop at various different airflow restrictions. (pressure inside the box)

  • @cewla3348
    @cewla3348 Před 11 měsíci

    whoo! Look at that! *GOES WILD WITH A HAMMER*

  • @Lil_Tom351
    @Lil_Tom351 Před 11 měsíci

    Broooo, you should make a “hundred thousand miles test on rc cars” but with higher quality cars. That would be awesome, I love that video

  • @victoryfirst2878
    @victoryfirst2878 Před 11 měsíci

    I am amazed how long the Dyson motors last. They are really made well. period !!!