Résoudre x³ - 300x = 3000 - Test d'admission à OXFORD

Sdílet
Vložit
  • čas přidán 19. 09. 2022
  • 🎯 Muscle ton cerveau en faisant de ton quotidien un exercice de maths que tu sauras résoudre 💪 : hedacademy.fr
    Nouvelle question issue du MAT, test d'admission à Oxford et à 2 autres universités anglaises : Warwick et Imperial College of London.
    L'équation x³ - 300x = 3000 admet :
    (a) aucune solution réelle
    (b) 1 seule solution réelle
    (c) 2 solutions réelles
    (d) 3 solutions réelles
    (e) une infinité de solutions réelles

Komentáře • 392

  • @SoleilNoir7
    @SoleilNoir7 Před rokem +82

    1ere fois que je révise les dérivées et tableau de variation depuis 20 ans. Merci pour ce moment de nostalgie.

    • @Shinobihaken9751
      @Shinobihaken9751 Před rokem +2

      🤣😂 moi pareil j'ai un bac littéraire de 2009 obtenue au Cameroun et la nostalgie était ouf... tien ca m'a redonné envie de faire des maths juste pour le plaisir. merci au prof il est hyper bon.

    • @GileadMaerlyn
      @GileadMaerlyn Před rokem +1

      Pareil ! Content de voir que je sais toujours dériver une fonction ça fait 15 ans que j'ai pas fait de maths.

    • @SoleilNoir7
      @SoleilNoir7 Před rokem

      @@GileadMaerlyn idem pour les fonctions du second degré mais les intégrales & co c'est aux oubliettes

  • @MrGaby46
    @MrGaby46 Před rokem +2

    Trop la classe franchement! Ce qui est cool c’est que à force de regarder tes vidéos, j’ai compris ton raisonnement même si t’as été rapide! Merci

  • @migoual
    @migoual Před rokem +34

    Je tombe par hasard sur cette vidéo à 3h15 du mat ( merci insomnie ) j'ai 36 ans et j'étais bon en math, mais à force de ne pas pratiquer, on oublie tout.
    Le petit rafraîchissement incroyable ! MERCI !

    • @BOUCHIO
      @BOUCHIO Před rokem

      Ha t'es pas le seul 🤣, et j'ai trouvé une racine à 21,038035 et des poussières

    • @jsuiquimoi
      @jsuiquimoi Před rokem

      @Car Djo Ah oui, vous avez du bien vous amuser. Parfois moj aussi ça me prend ;-)

  • @fredericfournier5662
    @fredericfournier5662 Před rokem +3

    Une bonne petite équation le matin avant de partir, ça remet les idées en place, merci 😄 et bravo pour la pédagogie, rendre accessibles les mathématiques c'est une vraie mission d'intérêt public.

  • @aymerick06
    @aymerick06 Před rokem +21

    J'ai 53 ans et les maths sont désormais un lointain souvenir (voire douloureux) ! je suis tombé par hasard sur vos vidéos et ma curiosité a été titillée pour savoir si j'étais toujours fâché avec les maths (malgré mon bac+5 sup de co) et j'avoue être totalement fasciné par votre charisme dynamique et ce sens de la pédagogie qu'il me manquait tant pendant mes études sur cette matière !
    Bravo ! je ne vais pas tardé à être réconcilié à ce rythme !

  • @JeremyMpelekibala
    @JeremyMpelekibala Před 6 měsíci

    Tu sais, j'aime quand c'est toi qui fait ce genre d'exercice d'entrée, surtout que ce ne sont pas des entrées ordinaires.Tu es drôle, sympathique, et compréhensif: tu prends ton temps pour expliquer correctement et simplement.

  • @nicolasmeux1288
    @nicolasmeux1288 Před rokem

    Je suis occupé depuis quelques mois mais toujours un plaisir de regarder tes vidéo même si ce ne sont pas les plus récentes.
    Honnêtement je partais sur quelque chose d'autres pour la réussir et çà fait toujours plaisir de se faire rappeler de toujours aller au plus simple en fait.

  • @erichuet4844
    @erichuet4844 Před rokem +19

    Excellent ! Il faudrait conseiller votre chaîne à tous les étudiants ! Vous avez le don de faire aimer une matière essentielle et souvent mal enseignée. 👍🙏

    • @JeremyMpelekibala
      @JeremyMpelekibala Před 6 měsíci

      Absolument d'accorement d'accord !! Le jeux d'mots mdr!!😅😅😂

  • @marcelorosa1973
    @marcelorosa1973 Před rokem +2

    Even though I do not speak this beautiful language (French), the math language allowed me to understand perfectly your explanation! Congrats!

  • @jltezen
    @jltezen Před rokem +41

    Punaise, si mes enfants étaient encore au lycée, je les laisserais pas manquer une seule de tes vidéos 😄

  • @chrismilundekoumba2993
    @chrismilundekoumba2993 Před rokem +5

    Merci c'est toujours un plaisir de vous suivre. J'ai essayé de résoudre cette équation, après avoir dressé le tableau complet de variations de la fonction x^3 -300x, j'ai trouvé que la valeur de la solution est 21,038 environ.

  • @pascalgallet5931
    @pascalgallet5931 Před rokem

    Très intéressant. Merci Professeur. Amitiés.

  • @leloui3546
    @leloui3546 Před rokem +6

    Tombé par hasard sur cette vidéo, j'ai pas tout capté, mais comme je me réintéresse aux maths depuis peu, je dirais juste que tes talents de pédagogue m'ont donné envie d'en apprendre plus !

  • @archymmie6664
    @archymmie6664 Před rokem +1

    Très agréable à regarder !!

  • @saidchaida5431
    @saidchaida5431 Před 2 měsíci

    Magnifique!
    Cela me ramène 48 ans en arrière, classe de Seconde Lycée EAK Alger, prof Laidoudi.
    a) et e) peuvent être éliminées d'emblée, du fait que x=0 n'est pas une solution et que la fonction passe de valeurs négatives à l'infini à des valeurs positives à l'infini.

  • @hugoyoutube1226
    @hugoyoutube1226 Před rokem

    Tres bonne pedagogie.Chapeau, c'est nickel

  • @horaciosanchez2051
    @horaciosanchez2051 Před rokem

    Franchement je trouve que tu expliques très bien!

  • @mohemedharrasse7186
    @mohemedharrasse7186 Před rokem

    Ça me fait plaisir de suivre tes videos

  • @stephanefortin6497
    @stephanefortin6497 Před rokem

    wow malade, tu es vraiment bon et cela a l'air tellement simple pour toi!

  • @michelmoreau6556
    @michelmoreau6556 Před rokem

    Super lumineux ça parait tellement simple merci

  • @Nozael92
    @Nozael92 Před rokem +19

    Sinon il y a plus simple (en tout cas plus instinctif il me semble):
    x^3 - 300x = 3000
    est équivalent à
    x^3 = 3000 +300x
    Du coup les solutions sont les intersections entre les deux fonctions :
    f(x) = x^3 et g(x) = 3000 +300x
    Pour x = 0 --> g(x) = 3000 et f(x) = 0
    la pente de f(x) tend vers +l'infini quand x tend vers +l'infini.
    la pente de f(x) tend vers -l'infini quand x tend vers -l'infini.
    la pente de g(x) est toujours de 300
    En essayant de tracer les courbes des deux fonctions on s'aperçoit vite que f(x) sera toujours < g(x) (regardez ce qu'il se passe quand x = -10 et quand x= valeur négative de racine carrée de 300 soit environ -17.3205080757) et que donc il n'y a pas de solution dans les x négatifs et que dans les positifs les deux courbes finiront par se croiser.
    Pour s'en convaincre une étude (très simple) de fonction le démontrera proprement, mais dans le cadre d'une réponse qui doit être rapide on peut (et on doit sinon pas le temps de finir le concours d'entrée) s'arrêter là et puis j'ai un peu la flemme, j'ai pas mon tableau.

    • @romainschindler2735
      @romainschindler2735 Před rokem +1

      La fonction qui a x associé x^3-300x-3000 a pour limites -♾ en -♾ et + ♾ en + ♾. Comme elle est continue elle s’annule. Elle le fait une fois et une seule dû faire de ses variations.

    • @chawkikiki1055
      @chawkikiki1055 Před rokem

      @@romainschindler2735 pourquoi elle s’annule une seule fois?

    • @romainschindler2735
      @romainschindler2735 Před rokem +2

      @@chawkikiki1055 pour ça il faut faire ce qui est fait dans la vidéo. Regarder les variations. Ce que je disais valait juste pour se rendre compte rapidement qu’il y avait au moins une solution.

  • @beethoven5984
    @beethoven5984 Před rokem +9

    C’est cool de voir le niveau augmenter. C’est pas le genre de prob que je réussi mais voire la résolution m’a bcp plus.

    • @Frty47
      @Frty47 Před rokem

      Ouais t'as raison surtout quand on est 23ème sur 27 au classement P.I.S.A 😏

  • @invocamateur
    @invocamateur Před rokem

    même si je connaissais ce genre de méthodes, j'y ait honnêtement pas pensé au départ (Il faut dire que ça fait longtemps que je ne m'en suis pas servi) mais j'avais quand même trouvé la réponse par résonnement logique donc je suis content

  • @konehabib7
    @konehabib7 Před rokem +24

    Si seulement on vous avait quand on était au lycée (il y a 25-30 ans) 😅 ! Merci Professeur, vous êtes formidable ! Je prie que ce soit utile à une infinité d'élèves dont la plupart n'est même pas encore née ! 🙏🏾

    • @MizyianGaming
      @MizyianGaming Před rokem

      j'étais en train de me dire exactement la même chose

    • @alainmikila6261
      @alainmikila6261 Před rokem

      300x fois 1000 ce n’est pas 3000 🫢🫢

  • @raph8456
    @raph8456 Před rokem +13

    Perso je factorise par x le membre de gauche => x(x^2-300)=3000
    Je fait un graphique de la fonction x et x^2-300 pour avoir le signe et les variations.
    Et ensuite je fait un graphique de x*x^2-300 et je vois l'allure de la courbe (multiplier par un nombre négatif change le signe des variations). La fonction étant négative de -inf à sqrt(300) et strictement croissante de sqrt(300) à +inf, elle passe forcément une seule et unique fois par 3000, comme elle tend vers +inf en +inf

  • @mieses-te9yl
    @mieses-te9yl Před rokem

    Génial! des souvenirs un peu brumeux pour moi. Merci.

  • @romainflohicphotographe

    super video !!! ça donne envie de refaire des math

  • @adsuarguillaume
    @adsuarguillaume Před rokem

    Vraiment au top ta chaine

  • @raven_san6278
    @raven_san6278 Před rokem

    Merci pour ce cours

  • @abuyao7907
    @abuyao7907 Před rokem

    Merci très intéressant

  • @italixgaming915
    @italixgaming915 Před rokem +1

    Alors pour ne pas faire son galérien comme le monsieur, voilà comment on torche ce petit truc insignifiant :
    Je pose f(x)=x^3-300x
    f est une fonction impaire, on va donc l'étudier juste sur R+ et on va voir si elle atteint -3000 ou +3000 pour x positif.
    f est dérivable et f'(x)=3x²-300 f'(x)=0 x²=100 x=10 (on est sur R+, l'autre racine, on s'en bat l'oeil).
    f est donc strictement décroissante entre 0 et 10 puis strictement croissante ensuite.
    f(0)=0
    f(10)=-2000 : minimum absolu sur R+ donc on ne descend jamais à -3000 donc notre équation d'origine n'a aucune solution sur R-.
    f(100)=970000.
    f est continue et strictement monotone sur [10;100] et 0f(100) donc on ne reverra jamais 3000.
    Voilà j'ai fini et lui il rame encore.
    Pour la route, la preuve que l'équation n'a aucune solution ENTIERE, juste parce qu'elle est marrante :
    x^3-300x=3000 peut être écrit : x^3=300.(10+x)
    On décompose 300 en facteurs premiers : 300=2².3.5².
    2 ne peut pas diviser x^3 sans diviser x et si 2 divise x, alors 8 divise x^3.
    De même on en déduit que 27 divise x^3 et que 125 divise x^3.
    On sait donc que x^3 est divisible par 27000, donc x est divisible par 30 donc x devrait s'écrire sous la forme 30.p.
    Mais comme x^3=300.(10+x), cela veut aussi dire que 10+x est divisible par 27000/300=90 donc x devrait s'écrire sous la forme 90.q-10.
    Les deux formes ne sont pas compatibles. Pas de solution.

  • @alestane2
    @alestane2 Před rokem +1

    On peut aussi décomposer en deux fonctions, f(x)=x3 et g(x)= 300 x + 3000
    Le problème revient à résoudre f(x)=g(x) (enfin, juste à dire combien il y a de solutions)
    Ca revient au même, c'est juste plus parlant pour moi.
    g a une dérivée constante égale à 300 (c'est une droite)
    f a une dérivée 3x2 toujours positive,
    croissante sur R+ et tendant vers l'infini quand x tend vers plus l'infini
    décroissante sur R- et tendant vers moins l'infini quand x tend vers moins l'infini
    Cette dérivée est égale à 300 pour x = -10 et x = +10
    Sur [-10, 10] f(x) a donc toujours une dérivé inférieure à celle de g(x) et croît donc moins vite
    En x = -10, f(x)= -1000 et g(x)=0 donc g(-10) est supérieure à f(-10)
    Donc f(x) qui croît moins vite ne peut pas "rattraper" g(x) sur cet intervalle. Pas de solution possible sur [-10, 10]
    Avant x = -10, f(x) a une dérivée plus grande que celle de g(x) donc croît plus vite. Si pour un x < -10 ont avait f(x) = g(x) alors f(-10) serait supérieur à g(-10) ce qui n'est pas le cas
    Donc pas de solution pour x < -10
    En x = 10, f(x) = 1000 et g(x) = 6000 La dérivée f est toujours supérieure à celle de g(x). f va rattraper g pour une vqleur de x supérieure à 10 et continuer à croitre plus vite que g . Il y a une solution unique pour x > 10

    • @befreedv6
      @befreedv6 Před rokem

      oui et je la trouve par itération :moi j'utilise la méthode des tangentes à f(x) progressives vers une racine et cela converge très vite ,après 4 itérations , à la 5 ème f(x)=0 ! => x=21.03803403
      algorithme = x(n+1)=xn - f(xn)/f'(xn)
      f(x)=x³-300x-3000 => f'(x)= 3x²-300 ,j'avais pris x0 =10 =>mais division par zéro donc j'essaye avec x0=15
      Xo = 15 , f(x0)=-4125 , f'(x0)=375 => x1=26
      X1 = 26 , f(X1)=6776 , f'(X1)=1728 => x2 = 22.0787037
      X2=22.0787037 , f(X2)= 1139.074976 , f'(X2)=1162.407472 => X3=21.0987754
      X3=21.0987754 , f(X3)=62.66286757 , f'(X3)=1035.474971 => X4=21.03825934
      X4=21.03825934, f(x4)=0.23158179 , f'(x4)=1027.825069 => x5= 21.03803403
      x5= 21.03803403 , f(x5) = ± 0 et c'est ok (on pourrait augmenter en passant en double-précision dans le calcul mais c'est inutile on a la réponse à 10exp(-9) près !) si il y a plusieurs racines ,le choix de x0 ira vers la plus proche ,si cela ne converge pas essayez une autre valeur de x0
      méthode très pratique pour solutionner un problème avec des équations de type sin(x) = a.x ,fréquente en géométrie !
      idem racine carrée de 2 ,il suffit de prendre f(x)=x²-2=0 => f'(x) =2x et on a une méthode rapide pour calculer des racines sans calculatrice scientifique !

  • @dupontfra
    @dupontfra Před rokem +4

    Bonsoir, j'ai utilisé une approche presque similaire. Si on s'intéresse juste à la courbe x3 - 300x on remarque qu'elle est symétrique : f(-x) = - f(x) et qu'elle s'annule en zéro. J'utilise la dérivée pour voir les extrêmes et je trouve également -10 et +10. Je calcule la valeur en 10 , soit -2.000 et je sais donc que c'est + 2.000 en -10. La courbe part donc de - l'infini, (x3 prépondérant), monte jusqu'à 2.000 (en -10), passe par zéro (en 0), redescend à -2000 (en +10) puis remonte à + l'infini. Comme on cherche à trouver 3.000, il n'y aura qu'une seule solution, après +10.
    Pour les curieux, si on essaie f(20) on trouve 8.000 - 300 x 20 soit 2.000, encore trop petit, f(22) est = 4048, trop grand ! Donc la valeur est entre 20 et 22. Et f(21)= 2961, donc la valeur est un peu plus que 21.
    Merci encore pour cette belle résolution !

    • @jeffh.8251
      @jeffh.8251 Před rokem

      mais oui, yes , bravo voir mon commentaire où j'annonce x = 21.03803403 .... mais c'est pas encore assez précis. Je suis étonné qu'on ne trouve pas une valeur de x nette et claire si je peut dire

    • @axeldep.1458
      @axeldep.1458 Před rokem +2

      Solution : (1500+500√5)^(1/3)+(1500-500√5)^(1/3) dont les premières décimales sont 21.0380340273553653316494
      Il faut écrire x = u+v en choisissant la valeur uv qui arrange le calcul (u*v=100).

    • @befreedv6
      @befreedv6 Před rokem +1

      @@jeffh.8251 sinon (déjà en simple précision 10 exp(-9) près) par itération moi j'utilise la méthode des tangentes à la courbe: cela converge très vite ,après 4 itérations , à la 5 ème f(x)=0 ! => x=21.03803403
      algorithme = x(n+1)=xn - f(xn)/f'(xn)
      f(x)=x³-300x-3000 => f'(x)= 3x²-300 ,j'avais pris x0 =10 =>mais division par zéro donc j'essaye avec x0=15
      Xo = 15 , f(x0)=-4125 , f'(x0)=375 => x1=26
      X1 = 26 , f(X1)=6776 , f'(X1)=1728 => x2 = 22.0787037
      X2=22.0787037 , f(X2)= 1139.074976 , f'(X2)=1162.407472 => X3=21.0987754
      X3=21.0987754 , f(X3)=62.66286757 , f'(X3)=1035.474971 => X4=21.03825934
      X4=21.03825934, f(x4)=0.23158179 , f'(x4)=1027.825069 => x5= 21.03803403
      x5= 21.03803403 , f(x5) = ± 0 et c'est ok (on pourrait augmenter en passant en double-précision dans le calcul mais c'est inutile on a la réponse à 10exp(-9) près !) si il y a plusieurs racines ,le choix de x0 ira vers la plus proche ,si cela ne converge pas essayez une autre valeur de x0
      méthode très pratique pour solutionner un problème avec des équations de type sin(x) = a.x ,fréquente en géométrie !
      idem racine carrée de 2 ,il suffit de prendre f(x)=x²-2=0 => f'(x) =2x et on a une méthode rapide pour calculer des racines sans calculatrice scientifique !

  • @uttanasana8686
    @uttanasana8686 Před rokem +19

    Ça fait 20 ans que j'ai terminé mes études mais je comprends encore tout 😄merci

    • @Amir-th3do
      @Amir-th3do Před rokem

      C’est la beauté des mathématiques. Contrairement aux autres matières

    • @Kawalski54
      @Kawalski54 Před rokem

      Personnellement j'ai des flashs de mes cours mais ça ne me revient pas très bien pour autant 😅

    • @Dadoudentdeloup
      @Dadoudentdeloup Před rokem +1

      grâce au soleil

  • @wanderinglord8164
    @wanderinglord8164 Před rokem

    La moitié de ma terminale L en 8,30 min c'est fou ! x) Merci Beaucoup !

  • @alainhensenne5167
    @alainhensenne5167 Před rokem

    Je trouve la réponse (b) parce que il faut résoudre X³-300x=3000 => admet une solution vraisemblablement positive (intuitivement).
    Pour le contrôle je teste les signes à gauche et fait la même approximation que vous .
    Sympa et élégante la démonstration.👍

  • @gillardinpascal2494
    @gillardinpascal2494 Před rokem

    Voie graphique simple et rapide.
    On pose x = 10 u.
    L'équation devient : 1000. u^3 = 3000 u + 3000
    Simplification membre à membre : u^3 = 3u + 3.
    On trace grossièrement le graphe de la fonction de chaque membre et on cherche les intersections :
    f(u) = g(u).
    Ces fonctions correspondent à des graphes élémentaires, traçables en quelques secondes.
    Aucune intersection possible sous l'axe des x (ou à gauche de l'axe des y).
    Une seule intersection dans les x et y positifs : u vaut à vue d'œil 2,1.
    Comme x = 10 u, la seule solution est environ x = 21.

  • @rno1784
    @rno1784 Před rokem

    De tête, je n'avais pas la solution (y compris en factorisant ;-) ). Mais en posant la fonction sur papier, ça va tranquillement. Merci à toi, pour eux 🙂

  • @morganlaleure8037
    @morganlaleure8037 Před rokem +2

    La vache, j'avais oublié tout ça... Merci !

  • @raphaelantoine9797
    @raphaelantoine9797 Před 7 měsíci

    Génie monsieur

  • @kalideodie
    @kalideodie Před rokem +1

    Je sais pas dire pourquoi, mais j'ai adoré. Pourtant quasi 20 ans que je n'ai pas fait ça.

  • @Bruleparlesillumines
    @Bruleparlesillumines Před rokem +2

    Sinon, pour ceux qui veulent gagner du temps : Quand on connait la forme de la courbe que revêt la fonction x³ et que l'on y retranche 300x et 3000, on se dit que la vague et le creux seront bien plus bas que l'axe des abscisses de sorte que seule la dernière partie de la courbe - strictement croissante - le traverse. 😁

  • @charles-arthurradford957

    Brillant !

  • @pzorba7512
    @pzorba7512 Před rokem +1

    Il faut prononcer en faisant les liaisons entre valeurs intermédiaires, très bel exercice pour motiver les élèves de terminale!

    • @hedacademy
      @hedacademy  Před rokem

      En plus je me suis fait la réflexion en montant la vidéo 😅

    • @pzorba7512
      @pzorba7512 Před rokem

      @@hedacademy Pas grave, vos vidéos respirent la bonne santé de la langue française, ce qui se fait rare avec l'intrusion accélérée du "globiche" dans les chaînes CZcams.

  • @SkynezZz_
    @SkynezZz_ Před rokem +1

    Somptueux !

  • @doubop
    @doubop Před rokem

    sympa, comme astuce ca me rappelle v'la les cours de terminale …effectivement si il n'y a pas de solution évidente il faut penser à se ramener à l'étude de fonction

  • @michaelrenaud8447
    @michaelrenaud8447 Před rokem +2

    Content de voir que du haut de mes pressures 50 ans j’ai encore réussi à trouver la bonne réponse avec les démonstrations qui va avec. 🎉🎉🎉

    • @oczhaal
      @oczhaal Před rokem

      Ah merde du coup vous avez beaucoup séché les cours de français...

  • @elias_gllrmn
    @elias_gllrmn Před rokem

    bien vuuuu j'y avais pas vu comme ca

  • @raftoupipe3614
    @raftoupipe3614 Před rokem +2

    T'as parlé très vite fait de négligeabilité, ça serait cool que t'en parles un peu plus en profondeurs en évoquant peut être le théorème des accroissements finis, j'ai bien aimé ce petit chapitre en prépa et je trouve ça dommage qu'on nous l'apprenne pas au lycée (surtout que tu peux enchainer avec des théorèmes croustillants sur les sommes 🤪).
    Merci pour tes vidéos elles sont vraiment bien pour chopper des astuces, sachant qu'on étudie sans calculatrice c'est hyper pratique

  • @hba12
    @hba12 Před rokem +8

    on peut voir toute de suite qu'il y a une seule solution en traçant les courbes de x3 et 3000+300x et voir combien de fois elles se croisent: 1 seule fois

    • @booli8542
      @booli8542 Před rokem

      On peut voir, mais "voir" n'est pas une démonstration.

    • @captncavern2315
      @captncavern2315 Před rokem +3

      @@booli8542 ca suffit pour un qcm, j'aime beaucoup cette méthode

  • @vincentbeuriot9484
    @vincentbeuriot9484 Před rokem

    Quand tu as la flemme de passer par les fonctions , tu peux également appliquer la méthode du bourrin :
    Déjà on élimine d'office la réponse " une infinité de solutions " car un polynome a autant de solutions réelles et complexes que son degré donc au total nous avons 3 solutions. La réponse ne peut pas non plus etre 2 solutions car un polynome du 3ème degré a soit une solution réelle ou trois.
    x^3-300x-3000=0
    Faisons le changement de variable x= u+v
    Par ailleurs nous avons l'identité remarquable (u+v)^3 = u^3 + 3u²v+3uv²+v^3
    En mettant tout à gauche et avec une factorisation habile nous obtenons : (u+v)^3 -3uv(u+v)-(u^3+v^3) =0
    Ainsi par identification par rapport au polynome de départ ceci donne : -3uv=-300 et -u^3-v^3= -3000
    nous avons uv = 100 et u^3+v^3= 3000
    Mettons uv au cube , nous obtenons : u^3v^3= 1000000 et u^3 + v^3= 3000
    Posons a = u^3 et b = v^3
    On a : ab = 1000000 et a+b = 3000
    ab = 1000000 et a = 3000 -b
    donc (3000-b)b=1000000
    -b²+3000b-1000000= 0
    Soit X la variable de ce polynome du second degré
    X²-3000X+1000000=0
    On oublie pas que les solutions de cette équation sont précisément u^3 et v^3
    Après calcul du delta , on trouve rapidement les deux solutions X1 = 2618.033 et X2= 381.966
    Nous on souhaite avoir u et v pour reformer x et non u^3 et v^3 , on effectue donc la racine cubique des deux solutions et on les additionnent entre elles nous obtenons que x= 21.038
    Il s'agit d'une solution réelle de notre équation du troisième degré. Reste à trouver les deux autres. On sait que :
    ( x-21.038)(ax²+bx+c)=0
    Appliquons la méthode des coefficients indéterminés pour trouver le polynome du second degré en facteur
    Distribuons :
    ax^3 +bx²+cx-21.038ax²-21.038bx-21.038c = 0
    ax^3 + (b-21.038a)x²+(c-21.038b)x-21.038c=0
    b-21.038a = 0
    c-21.038b=-300
    -21.038c=-3000
    En substituant on a rapidement a = 1 b= 21.057 et c= 143
    Vérifions déjà si celà est correct :
    (x-21.038) ( x²+21.057x+143)=0
    x^3+21.057x²+143x-21.038x²-443x-3000=0 ce qui donne bel et bien x^3-300x-3000=0
    J'ai arrondis au vu des nombres , une petite différence implique un écart important.
    Résolvons enfin x²+21.057x+143 =0
    On voit que delta est négatif ce qui suffit pour avoir l'info sur la nature des 2 solutions restantes , il s'agit de deux solutions complexes.
    Conclusion , x^3-300x-3000=0 possède une solution réelle qui est environ x=21.038 et deux solutions complexes. La bonne réponse est donc 1 solution réelle.
    Trop facile d'entrer à Oxford ;)

  • @DUBOINPascal
    @DUBOINPascal Před rokem +1

    - Recalé avant même d'avoir commencé :-) cependant la résolution m'intéresse fortement !!

  • @baptiste9406
    @baptiste9406 Před rokem +2

    Pour ceux qui y arrivent il est possible de visualiser la courbe, pour tous les x négatif avec x cube et -300x on comprend vite que tout les Y seront négatif, ensuite pour les X positif, le -300x influera plus que le x cube sur les premier nombres et donc la courbe sera décroissante mais très rapidement le X cube reprendra le dessus et la courbe tendra vers l infini et passera donc par 3000 qu une seul fois. Ça demande un peu plus de recul mais qu est ce que ça fait gagner du temps sans trop se prendre la tête 😜

    • @amineaboutalib
      @amineaboutalib Před rokem

      x^3-300x n'est pas toujours négative pour les x négatifs, tu sors d'où ça ?

  • @armand4226
    @armand4226 Před rokem +8

    Je reviens, j'ai essayé de ne traiter que l'équation du second degré en laissant de côté le "x" du début et figurez vous que .....
    JE NE SUIS ARRIVÉ A RIEN ! 😄
    Étonnant hein ?
    Alors, j'ai regardé la suite de la vidéo.
    C'est sûr, que je n'y étais pas !

  • @thomasg53
    @thomasg53 Před rokem

    Methode de Cardan. Delta est rapidement trouvé et positif donc 1 solution. 2 minutes de plus pour la calculer (environ 21.03). Aussi possible de trouver les solutions complexes.

  • @druzicka2010
    @druzicka2010 Před 21 dnem

    QCM sympathique et bonne résolution pour y répondre. :)

  • @h.younous3290
    @h.younous3290 Před rokem

    Merci

  • @benchekrounmohamed5461

    Goood job professor

  • @bubbathemaster
    @bubbathemaster Před rokem

    La démonstration est chouette mais personnellement avant de regarder la vidéo ma première idée était de se faire une représentation graphique de f(x) ça aurait sympa que tu montres la tête de la fonction on voit direct combien de fois elle traverse y=0
    Ce genre de question doit être instinctive sinon t’auras jamais le temps de faire le test!

  • @halimk1777
    @halimk1777 Před rokem

    On aurait pu aussi calculer la derivee seconde pour voir s’il y a des extrema ou de simples points d’inflexion comme dans x^3 et repartir avec le theoreme des valeurs intermediaires.

  • @sirobobd7337
    @sirobobd7337 Před rokem

    A 26 rien qu'au titre de la vidéo j'ai réfléchi 10 minutes sans trouver de papier pour écrire mon résonnement mais j'ai réussi à trouver avant de lancer la vidéo. Merci pour celle-ci ce fut très instructif.

  • @user-rc2mc3je3b
    @user-rc2mc3je3b Před rokem

    Merci; après 2 classes de première et une terminale C j'ai enfin compris à quoi servait entre autres d'étudier la dérivée!... Bon, ok, je n'étais pas bon en maths

  • @mathscience757
    @mathscience757 Před rokem

    Oui, assez facile comme ''problème''. J'ai aussi utilisé la dérivé. Il faut que la personne qui cherche à résoudre ce type problème doit connaitre les types de courbe de degré 1 (la droite), de degré 2 (la parabole), de degré 3 (nom ?)...cela le guide pour trouver la solution.

  • @noa4953
    @noa4953 Před rokem +1

    La solution vaut environ 21.038, la valeur exacte pour les curieux:
    10( (1.5 + sqrt(5)/2 ) ^(1/3) + (1.5 - sqrt(5)/2 ) ^(1/3) )

    • @befreedv6
      @befreedv6 Před rokem

      ou par itération moi j'utilise la méthode de la tangente(newton-rapson) cela converge très vite ,après 4 itérations , à la 5 ème f(x)=0 ! => x=21.03803403
      algorithme = x(n+1)=xn - f(xn)/f'(xn)
      f(x)=x³-300x-3000 => f'(x)= 3x²-300 ,j'avais pris x0 =10 =>mais division par zéro donc j'essaye avec x0=15
      Xo = 15 , f(x0)=-4125 , f'(x0)=375 => x1=26
      X1 = 26 , f(X1)=6776 , f'(X1)=1728 => x2 = 22.0787037
      X2=22.0787037 , f(X2)= 1139.074976 , f'(X2)=1162.407472 => X3=21.0987754
      X3=21.0987754 , f(X3)=62.66286757 , f'(X3)=1035.474971 => X4=21.03825934
      X4=21.03825934, f(x4)=0.23158179 , f'(x4)=1027.825069 => x5= 21.03803403
      x5= 21.03803403 , f(x5) = ± 0 et c'est ok (on pourrait augmenter en passant en double-précision dans le calcul mais c'est inutile on a la réponse à 10exp(-9) près !) si il y a plusieurs racines ,le choix de x0 ira vers la plus proche ,si cela ne converge pas essayez une autre valeur de x0
      méthode très pratique pour solutionner un problème avec des équations de type sin(x) = a.x ,fréquente en géométrie !
      idem racine carrée de 2 ,il suffit de prendre f(x)=x²-2=0 => f'(x) =2x et on a une méthode rapide pour calculer des racines sans calculatrice scientifique !

  • @gillardinpascal2494
    @gillardinpascal2494 Před rokem

    On peut compléter l'analyse graphique d'intersection des courbes f=u^3 et g=3u+3
    par le tableau de variation de l'écart vertical e=g-f ou e=(3u+3) - (u^3).
    Sa dérivée est e' = (g-f)' ou e'=3 - 3.u^2
    Les racines de e' sont les solutions de l'équation u^2 = 1 donc u=-1 et u=+1.
    "L'écart vertical e" décroît ainsi jusqu'à un minimum de e=+1 en u=-1
    puis croît jusqu'à un minimum de e=+5 en u=+1.
    Il décroît ensuite vers moins l'infini en passant par son annulation (seule intersection des 2 courbes)
    pour u = 2,1 environ.
    Cette valeur de u est donc la seule solution de l'équation en u.
    Elle correspond à une valeur de x=21 environ, qui est l'unique solution de l'équation en x de départ.

    • @gillardinpascal2494
      @gillardinpascal2494 Před rokem

      Plus élégamment, les racines de la dérivée de l'écart e' correspondent aux 2 points où les tangentes de la courbe cubique f sont parallèles (dérivée identique) à la droite g.
      Cet aspect graphique ajoute une agréable sensation visuelle à la résolution strictement algébrique.
      On visualise alors mieux les variations d'écart (vertical) entre les deux courbes et leurs extrema, ce qui explique visuellement le fait de la solution unique de l'intersection.

  • @laurentyozan5021
    @laurentyozan5021 Před rokem +1

    SVP MONSIEUR POUVEZ FAIRE UNE VIDÉO SUR LES COMBINAISONS LINÉAIRE DE SECOND C C'EST URGENT MERCI 😊

  • @Laggron93
    @Laggron93 Před rokem +125

    La miniature laisse entendre "trouve les solutions"... J'ai passé 10 minutes avec un système à trois inconnues pour finalement voir après avoir cliqué que ce n'était pas le sujet...

    • @booli8542
      @booli8542 Před rokem +10

      Exactement pareil, ça m'a énervé 😅

    • @vegetaleprincedessaiyens5036
      @vegetaleprincedessaiyens5036 Před rokem +4

      J’ai fait pareil, ca m’a saoulé

    • @hedacademy
      @hedacademy  Před rokem +56

      Effectivement c'était pas top. Parfois je laisse un peu de flottement à dessein mais là c'était contre productif.. J'ai changé. Merci de vos retours. Au moins vous vous êtes plus entraîné 😅
      Mais ça me donne une idée de vidéo où on procèderait par dichotomie comme à l'époque 😄

    • @youssjfozn9549
      @youssjfozn9549 Před rokem +1

      Un système pour trouver les racines d’un polynôme ??? Mdrrr

    • @Laggron93
      @Laggron93 Před rokem +4

      @@youssjfozn9549 J'ai tenté de développer (x-a)(x-b)(x-c) puis d'identifier les coefficients du polynôme aux expressions en a, b et c pour voir si ça aboutissait à quelque chose (incohérence ou résultat).

  • @jrm_0749
    @jrm_0749 Před 11 měsíci

    Super video. Idée de vidéo : faire un sujet complet du kangourou niveau S (Terminale)

  • @erwanthomas
    @erwanthomas Před rokem +1

    Il y a beaucoup plus rapide sans faire de calcul, il s'agit de trouver l'intersection entre x^3 et 300x+3000,tu sais que x^3 est plus pentue que 300x sauf entre =1 et 1 mais que dans cette zone x^3 est entre =1 et 1 alors que 300x +3000 est largement au dessus à cette endroit, la réponse est forcément 1.

  • @MTerogawa
    @MTerogawa Před rokem

    Fonction de degré impair donc au moins une solution, égal à 3 donc au plus 3 solutions.
    La dérivée est 3x²-300 et s'annule en -10 et +10. En -10, on a -1000+3000-3000=-1000

  • @smugg3953
    @smugg3953 Před rokem +1

    J'ai eu une solution bien plus simple ;
    Je me suis d'abord dit que x devait nécessairement être supérieur à environ 17 pour que x3 - 300x soit supérieur à zéro (puisqu'aucun nombre négatif ne le permet). Ensuite j'ai pu chercher des solutions "évidentes" comme tu les appelles. J'ai testé 20, ce qui m'a donné x3 - 300x = 2000.
    Vu que la progression entre 17 et 20 était plutôt violente, j'ai fait 21 qui donne 2961 et 22 qui donne 4048.
    Comme x3 "dicte sa loi" comme tu le dis si bien, aucune valeur de x supérieure à 22 n'aurait pu être la solution.
    On a donc une seule et unique solution : 21 et des poussières.
    Voilà, je ne sais pas si c'est complètement idiot et/ou de la chance, mais une chose est sûre, je n'ai pas fait de maths depuis la seconde, soyez indulgents

    • @befreedv6
      @befreedv6 Před rokem

      pas mal sinon par itération moi j'utilise la méthode de la tangente(newton-rapson) cela converge très vite ,après 4 itérations , à la 5 ème f(x)=0 ! => x=21.03803403
      algorithme = x(n+1)=xn - f(xn)/f'(xn)
      f(x)=x³-300x-3000 => f'(x)= 3x²-300 ,j'avais pris x0 =10 =>mais division par zéro donc j'essaye avec x0=15
      Xo = 15 , f(x0)=-4125 , f'(x0)=375 => x1=26
      X1 = 26 , f(X1)=6776 , f'(X1)=1728 => x2 = 22.0787037
      X2=22.0787037 , f(X2)= 1139.074976 , f'(X2)=1162.407472 => X3=21.0987754
      X3=21.0987754 , f(X3)=62.66286757 , f'(X3)=1035.474971 => X4=21.03825934
      X4=21.03825934, f(x4)=0.23158179 , f'(x4)=1027.825069 => x5= 21.03803403
      x5= 21.03803403 , f(x5) = ± 0 et c'est ok (on pourrait augmenter en passant en double-précision dans le calcul mais c'est inutile on a la réponse à 10exp(-9) près !) si il y a plusieurs racines ,le choix de x0 ira vers la plus proche ,si cela ne converge pas essayez une autre valeur de x0
      méthode très pratique pour solutionner un problème avec des équations de type sin(x) = a.x ,fréquente en géométrie !
      idem racine carrée de 2 ,il suffit de prendre f(x)=x²-2=0 => f'(x) =2x et on a une méthode rapide pour calculer des racines sans calculatrice scientifique !

  • @stephaneporte1264
    @stephaneporte1264 Před rokem

    J aurai aimé avoir un prof de math comme vous

  • @Stephmikhael
    @Stephmikhael Před 4 hodinami

    Que dire du raisonnement suivant ? (le plus rapide ?) : x^3 - 300x = 3000 x (x²-300) = 3000
    Donc x est forcément positif, et forcément il n'y a une seule valeur de x pour que (x²-300) qui est positif multiplié par x qui est positif donne 3000 (on sait même que x > 10√3 car (x²-300) > 0).

  • @devk4026
    @devk4026 Před rokem

    La solution exacte est :
    1/3 * racinecubique[40500 - 13500 * racine(5)] + 52^(2/3) * racinecubique[3+ racine(5)]
    Soit environ 21,103 mais faut aller plus loin dans les décimales pour avoir la solution qui annule l’équation entièrement

  • @etoiledechue1080
    @etoiledechue1080 Před rokem

    Les maths de Terminal ES ( alors que j'étais en L 😂 ) me manquent. J'avais pensé aux variations mais hélas mon cerveau ne s'est pas souvenu du tableau de variation... 😅 Ceci dit, faire des maths plus complexe m'avait manqué
    J'avais essayé dans un 1er temps de faire une tactique du : x³ - 300x x² - 300. Mais c'est malhonnête car on a toujours le 3000 qui n'a pas été traité 😭

  • @omurerbek
    @omurerbek Před 3 měsíci

    j’aime le maths et je regarde ton vidéos pour prendre français.

  • @julbgmail461
    @julbgmail461 Před rokem +1

    Il.te prend en 3eme et en quelques mois il te lache au bac chapeau

  • @mohammedjadazour7228
    @mohammedjadazour7228 Před rokem

    X^3 -300x = -50 (x^3)’’ + x^3
    Équation différentielle sous la forme de ay’’+y = K

  • @242VIBESofficiel
    @242VIBESofficiel Před rokem

    Très fort en tout cas

  • @leptitdeltounet6986
    @leptitdeltounet6986 Před rokem

    le mec il est trop fort

  • @tontonbeber4555
    @tontonbeber4555 Před rokem

    Sans regarder la vidéo, je dirais que de mon temps c'était un cadeau pour un test en lycée.
    Il suffit de se représenter la fonction et sa dérivée.
    Fatalement 1 ou 3 racines ou 2 si une double
    f = x3 -300x - 3000
    f' = 3x2 - 300 f'=0 => x = -10, 10
    coeff de f en x3 est positif => x=-10 est un max, x=10 est un min
    f(-10) = -1000 il n'y a qu'une seule racine, au delà du min x=10

  • @afuyeas9914
    @afuyeas9914 Před rokem

    Je sais pas si c'est voulu mais la solution réelle s'exprime en fonction du nombre d'or ce qui en fait un problème plutôt élégant

  • @olivierboivin3017
    @olivierboivin3017 Před rokem

    Question : Est-ce qu'on voit en terminal qu'un polynôme de degré n admet au plus n solutions ? Ce qui exclut donc l'infinité de solutions. Par ailleurs, ne faut-il pas ajouter que la fonction est continue (ce qui est peut être implicite une fois la dérivée définie, mais bon) pour dire qu'elle passe nécessairement par 0 dans le dernier intervalle ?

  • @michelbernard9092
    @michelbernard9092 Před rokem

    Ça m'a pris 30 secondes de tête : Dès lors qu'on connaît les graphes des cubiques, il suffit de calculer le premier maximum local de la fonction y=x^3-300x. La dérivée s'annulant en premier (donc maximum local) pour x=-10 alors y=2000 < 3000 et c'est fini.. ensuite la fonction chute vers un minimum local qui ne nous intéresse pas, pour ensuite repartir vers l'oo, il n'y a donc qu'une solution.

  • @ronalddinal2094
    @ronalddinal2094 Před rokem

    je kiffe

  • @chlore2amine
    @chlore2amine Před rokem +56

    Il y avait une solution évidente : regarder la fin de la vidéo. (oui c'est moi près du radiateur)

  • @richardheiville937
    @richardheiville937 Před rokem

    Il y a un formulaire pour résoudre les équations polynomiales du 3ème degré. On sait immédiatement que cette équation aura ou bien une solution, ou bien trois solutions. Il ne peut pas y avoir aucune solution car la fonction que vous considérez change de signe entre -oo et +oo. L'équation ne peut pas avoir que deux racines réelles car cela signifierait que la troisième est un nombre complexe non réel et cela n'est pas possible car si un nombre complexe est solution, son conjugué est aussi solution et ce sont deux nombres distincts.

  • @ItzKamo
    @ItzKamo Před rokem

    après 20 secondes, j'avais déjà mal à la tête 😂

  • @robertcaparros9673
    @robertcaparros9673 Před 11 měsíci

    Top 👍

  • @idrissazigla8164
    @idrissazigla8164 Před rokem

    Hyper bien

  • @lazare93
    @lazare93 Před rokem

    Il faut déjà qu'on réserve ma place à Oxford, je viendrai en promenade de temps en temps.

  • @jim2376
    @jim2376 Před 2 měsíci

    Mr. Gauss provides the answer in the Fundamental Theory of Algebra. Highest power is three, therefore three solutions.

  • @JoseyWales93
    @JoseyWales93 Před rokem

    0:32 Si ! Les équations de degré inférieur ou égal à 4 sont solubles par radicaux, pour les équations de degré 3 on a les formules de Cardan.

    • @MasterChakra7
      @MasterChakra7 Před rokem

      Pas sûr que ce soit niveau terminale, aussi bonne soit l'école.

  • @marcinmorun
    @marcinmorun Před rokem

    Vous comptez quoi exactement et à quoi ça s'applique?

  • @t.r.e.s.
    @t.r.e.s. Před rokem +1

    je confirme la solution n'était pas évidente :
    (1/3)*(³√(40500-13500√5)+5*³√4*³√(3+√5))

  • @isluderea8322
    @isluderea8322 Před rokem

    J'ai réussi! Ca fait un bail que j'avait oublié toutes ces règles.

  • @pierreleguyader8405
    @pierreleguyader8405 Před rokem

    ya pas moyen de factoriser en se disant qu'un polynôme de degré 3 est forcément le produit de 2 polynômes (un de degré 1 et un de degré 2)?

  • @cainabel2553
    @cainabel2553 Před rokem

    Déjà vu la forme générale, avec le x^3, on sait qu'il ne peut pas y avoir zéro solution, encore moins une infinité!
    Mais entre 1 ou 3 racines, ou même 2 (si il y a une simple plus une double), on ne peut pas dire.

  • @lazare93
    @lazare93 Před rokem

    Facile, réponse b). La fonction x-->x³-300x n'atteint la valeur 3000 qu'après x=10.

  • @julieng.4375
    @julieng.4375 Před rokem

    Pourriez-vous faire une vidéo sur les notions de bijection, injection et surjection ?

    • @pipicaca1370
      @pipicaca1370 Před rokem

      On trouve énormément de vidéos sur ces notions là :
      Injection : si deux image sont les mêmes alors c’est que les antécédents sont égaux
      Surjection : pour chaque élément de l’ensemble d’arrivé tu peux l’atteindre avec un élément de l’ensemble de départ avec la fonction f
      Bijection : chaque élément de l’ensemble d’arrivé peut être atteint par un unique antécédent par la fonction f

    • @julieng.4375
      @julieng.4375 Před rokem +1

      @@pipicaca1370 Merci je suis au courant sauf que si je pose la question ici, c'est justement parce que je souhaiterais que cela soit Hedacademy qui traite ces notions sur sa chaîne