Trapping a Beam of Light In a Loop Of Fiber Optic Cable

Sdílet
Vložit
  • čas přidán 24. 08. 2023
  • You can get 21% off BEAR here: foreo.se/kyrm
    A few published studies talking about microcurrent devices:
    www.sciencedirect.com/science...
    www.ncbi.nlm.nih.gov/pmc/arti...
    Wound care with electrical stimulation:
    www.mdpi.com/2227-9032/2/4/445
    onlinelibrary.wiley.com/doi/1...
    www.ncbi.nlm.nih.gov/pmc/arti...
    www.ncbi.nlm.nih.gov/pmc/arti...
    In this video I show you how optical fibers can trap light using total internal reflection
    Shop the Action Lab Science Gear here: theactionlab.com/
    Checkout my experiment book: amzn.to/2Wf07x1
    Twitter: / theactionlabman
    Facebook: / theactionlabofficial
    Instagram: / therealactionlab
    Snap: / 426771378288640
    Tik Tok: / theactionlabshorts
  • Věda a technologie

Komentáře • 1K

  • @qg786
    @qg786 Před 9 měsíci +1569

    I'm a telecoms engineer that installs fibre and we use red lights to find faults in our telecoms network. The light once shone through can be seen through the fibre at a few kilometers! 👌🏽

    • @userunfriendly9304
      @userunfriendly9304 Před 9 měsíci +92

      I love that fiber optics can use different wavelengths. I hope that our technology becomes so precise that billions of wavelengths can be used on a single line.

    • @TiSapph
      @TiSapph Před 9 měsíci

      ​@@userunfriendly9304 A single mode fiber usually has an operating range of a couple hundred nanometres already. If the wavelength is too low, higher modes are allowed (limits data rates) and if the wavelength is too large, it won't be guided anymore. You can get "endlessly singlemode" photonic crystal fibers, which have a very wide operating range, but they are stupid expensive.
      The bigger issue is that glass absorbs the light. You get the lowest absorption at 1310nm and 1550nm, so for long distance you are pretty much limited to those two bands. But thankfully that's more than enough for data transfer. Technically a single wavelength source is enough for insane data speeds, however it's more practical use multiple different wavelengths that are close to 1310 or 1550. With dense wavelength division multiplexing we can currently we can squeeze around 100 channels with 100Gbit/s each into that wavelength range. If you increase the number of channels your maximum data rate per channel will go down as the channels will start to overlap

    • @xXMaDGaMeR
      @xXMaDGaMeR Před 9 měsíci +4

      wow super interesting!

    • @zorilaz
      @zorilaz Před 9 měsíci +9

      What the heck is a fiber engineer?

    • @drstefankrank
      @drstefankrank Před 9 měsíci +71

      @@userunfriendly9304 Currently 64 wavelengths are common. It's hard to separate them if the wavelengths are too narrow to each other. You also can't spread too far out, because the reflective index varies with wavelength for the used glass inside.
      Still impressive. 25 Gbit/s per second on a single wavelength is 1.6TBit/s on a single strand of fibre. One fibre cable can have thousands of strands without getting too bulky.

  • @GeoffryGifari
    @GeoffryGifari Před 9 měsíci +914

    I thought the reason why we shouldn't bend the fiber optic cable too much is because the glass inside would snap

    • @TheActionLab
      @TheActionLab  Před 9 měsíci +454

      that too!

    • @mike1024.
      @mike1024. Před 9 měsíci +139

      I was actually amazed that the glass didn't snap, but I guess it was much thinner than other fiber-optic cables I've encountered in the past.

    • @NavinF
      @NavinF Před 9 měsíci +118

      @@mike1024. Modern fiber is very resilient. I've slammed cabinet doors on them and seen no loss in signal. I'm sure you lose a little, but it's too small for cheap 10gbps optics to measure.

    • @mike1024.
      @mike1024. Před 9 měsíci +18

      @@NavinF Good to know! I haven't looked at a fiberoptic cable in several years.

    • @clairecelestin8437
      @clairecelestin8437 Před 9 měsíci +130

      @@NavinFThe phrase "cheap 10gbps optics" sent me into a time warp and made me realize that we live in the future

  • @calestolle3251
    @calestolle3251 Před 9 měsíci +226

    I love how this channel brings a sense of whimsy to science. Thank you for your material!

    • @weblure
      @weblure Před 6 měsíci +5

      The pseudoscience and science fiction in this channel is very whimsical indeed. The scam product sponsorship was the cherry on top, lol

    • @abdou.the.heretic
      @abdou.the.heretic Před 6 měsíci

      ​@@weblureSponsorblock. It made youtube watchable again instead of endless pitches for Nord Shark Shadows Mafia Legends

  • @BriShep123
    @BriShep123 Před 9 měsíci +178

    Surprising that you didn't mention Lene Hau at all. In 2001 she became the first person to stop light completely, using a Bose Einstein Condensate.

  • @kilroy987
    @kilroy987 Před 9 měsíci +103

    The trouble is light is invisible until it illuminates something visible, and once that's true, light has left the system because it's dispersing everywhere.
    So even if you successfully trap light in a perfectly reflecting fiber optic cable, it's such a tiny amount length wise that it would require an extremely slow motion camera to witness the exiting light illuminating anything.

    • @vaakdemandante8772
      @vaakdemandante8772 Před 9 měsíci +1

      light is information/energy and the fiber optic cable does not have much capacity for storing that energy or to put it in other way, its ability to decrease entropy is limited.

    • @geemy9675
      @geemy9675 Před 9 měsíci

      @@vaakdemandante8772 damn...I hoped I could replace my ev batttery with a small loop of optic fiber 😀 ok no problem I'll just replace it with electrons in a loop of superconductor 👍superconductor can actually fix the decay of the signal, because there is actually ZERO resistance. but there is a limit for the amps you can pump before the magnetic field breaks the superconducting effect.
      EDIT funny you can actually store energy as magnetic field in a superconducting coild, but its very low density BUT extremely fast charge/discharge (under a ms)

    • @ThunderCat19D
      @ThunderCat19D Před 9 měsíci +2

      So a sort of water isn't wet water makes things wet. Light isn't light it illuminates things.

    • @mgancarzjr
      @mgancarzjr Před 8 měsíci

      ​@@ThunderCat19Dit's an interesting way to exchange energy from one piece of matter to another
      An excited electron emits a photon which then excites another electron which emits another photon to get back to ground state, etc.

    • @rearmisser
      @rearmisser Před 8 měsíci

      extremely is an understatement 😂

  • @SIK_Mephisto
    @SIK_Mephisto Před 9 měsíci +93

    The speed of light can be slowed down depending on the medium it travels through. This may be a fun concept to look into to further explore light confinement.

    • @drmaheshkumar4913
      @drmaheshkumar4913 Před 9 měsíci +8

      Actually refractive index of a medium is nothing but the ratio of speed.
      Speed of light in air is about 3*10^9 m/sec and in water its speed is 2*10^9m/sec
      if we divide the speed of light in air by that in water we actually just get the refractive index of water.
      Diamond has one of the highest refractive index of 2.4.
      Hence although it slows down the speed of light by 2.4 times ,the speed is still way to high and hence does not make a difference.

    • @Milesco
      @Milesco Před 9 měsíci +4

      I like to explore a little light confinement now and then. 🔗 🔒 😉

    • @critopadolf5534
      @critopadolf5534 Před 9 měsíci

      But won’t a slower speed of light mean more energy lost per meter traveled?

    • @beardymcbeardface69
      @beardymcbeardface69 Před 9 měsíci +1

      With respect to electrical conductors, one thing I found very interesting was that the speed of electrons of AC signals in conductors, has far more to do with what the insulation material is, than what the electrical conductor material is. This phenomena becomes more and more pronounced as the AC signal frequency increases.

    • @cristianjuarez1086
      @cristianjuarez1086 Před 9 měsíci +1

      You can't slow down the speed of light because its constant. You can only make it go a longer path

  • @kalvincochran9505
    @kalvincochran9505 Před 9 měsíci +27

    You’ve taught me so much physics and inspired me to take a physics class over the summer which has expanded my knowledge so much and I understand your videos so much better and I understand my other studies better because it’s changed the way I think about things

  • @DepthsOfOblivion666
    @DepthsOfOblivion666 Před 9 měsíci +25

    You are the science teacher that I needed in high school. Love your videos!

    • @prestonburton8504
      @prestonburton8504 Před 7 měsíci

      Amen - Amen! and collage as well- he is a perfect model for how teaching should be approached.

  • @flamencoprof
    @flamencoprof Před 9 měsíci +10

    Great demo of the general principles of fibre optics, and the behaviour of optical fibres. I enjoy this channel and hope it has lots of younger followers.

  • @alexnather7614
    @alexnather7614 Před 9 měsíci +78

    Action lab never fails to entertain and "enlighten" me 😀

    • @frenesisseredsmoker1831
      @frenesisseredsmoker1831 Před 9 měsíci +6

      This pun brightened my day

    • @The_BananamanMC
      @The_BananamanMC Před 9 měsíci +2

      If i had a "sun" he would love that pun
      Edit: ooh a rhyme

    • @Vordikk
      @Vordikk Před měsícem

      @@frenesisseredsmoker1831 sometimes im seeing bright light sparks with closed eyes when sleeping. I thought that's a bug, but seemingly this is Action Lab turns on his 100000000 lumen flashlight on other side of the planet.

  • @WouterVerbruggen
    @WouterVerbruggen Před 9 měsíci +139

    The thickness of a fible optic cable core depends on what kind it is. If it is multimode, it is typically 50 microns which is around the thinkness of a human hair. Single mode cables are around 9 microns, a 5th (not a 10th) of a human hair. The closup you show is a thicker multimode one, the one you play with a single mode.

    • @AKAtheA
      @AKAtheA Před 9 měsíci +10

      except that's just the core, the fiber also has cladding, bringing the OD to 125 microns for both multi and single mode...

    • @WouterVerbruggen
      @WouterVerbruggen Před 9 měsíci +7

      @@AKAtheA yes, like I specify in the first sentence XD

    • @ker6349
      @ker6349 Před 9 měsíci +3

      Bro stopped reading 7 words in lmao

    • @the_ALchannel
      @the_ALchannel Před 9 měsíci +1

      Is that why at 3:05 light is in two bright spots on the output of the cable? Is that a cross-section of the intensity of the propagating mode?

    • @ultimateearrapechannel31
      @ultimateearrapechannel31 Před 8 měsíci

      @@WouterVerbruggennooit gedacht hier een nederlander tegen te komen

  • @ten-tonnetongue
    @ten-tonnetongue Před 9 měsíci +2

    YOUR PRODUCTION QUALITY HAS INCREASED AND I LOVE IT.

  • @fuzzylon
    @fuzzylon Před 9 měsíci +7

    Great video !
    I've worked with fibre cables for many years, but not seen some of the things you demonstrated today before.

  • @wealthyblackman2655
    @wealthyblackman2655 Před 9 měsíci +13

    Always dreamed of "light trapping" but my theory utilized two way mirrors in a tetrahedron type of ball with multiple surfaces reflecting at many different angles. I do like the fiber cable experiment though AND you should visit Lucent Technologies in Georgia to get a longer fiber optic cable.

  • @valiantwarrior4517
    @valiantwarrior4517 Před 9 měsíci +2

    Thanks for the great explanation. I’ve always found fiber optics fascinating.

  • @Bigshooterist
    @Bigshooterist Před 9 měsíci

    Your topic matter is beyond amazing. I find it makes me ponder things I'd never even considered.

  • @LordElijah
    @LordElijah Před 9 měsíci +4

    I had the exact question of can we capture light, thanks for such an awesome video!

  • @chadbertrand1460
    @chadbertrand1460 Před 9 měsíci +13

    Just a thought that while light is entering the bend in the closed loop, it is also escaping through the same bend. You would need some kind of 1-way photon valve to do a proper test.

    • @u1zha
      @u1zha Před 9 měsíci +5

      Yeah, holding it in the flashlight for prolonged time achieves nothing extra.
      The moment when bend is straightened again, that's when some photons will be caught bouncing inside, as they don't manage to escape. But that's such a tiny amount, can't be expected to be noticeable to human eye in these tests _even if_ it was not subject to absorption.

  • @soutie123
    @soutie123 Před 9 měsíci +1

    One of my favourite channels. Thanks for your content.

    • @dvoiceotruth
      @dvoiceotruth Před 9 měsíci

      Unassuming channel name, nerdy guy, speaks like he is eating cotton candy. What can you ask more? Much much better than the overrated nile red blah blah and his 'commenters gang'

  • @brfisher1123
    @brfisher1123 Před 9 měsíci +28

    I know something similar to this happens with different kinds of light/electromagnetic waves such as the case with of the waveguide in a microwave oven that guides microwaves into the cooking chamber as well as the ionosphere that enables the long-distance propagation on longwave radio waves such as the ones used in A.M. radios.

  • @jeremyortiz2927
    @jeremyortiz2927 Před 9 měsíci +50

    My father developed a method to splice fiber-optic cables back in the early 80s when he was in the Air Force. Prior to that, full replacement was the only option. Because it was while on duty, he could not patent the process. However, he did receive a $10k "Ideas" award for his efforts.

    • @DeezNutz-ce5se
      @DeezNutz-ce5se Před 9 měsíci +6

      Should've quit his job and patent. Would been a millionaire

    • @awgunner429
      @awgunner429 Před 9 měsíci +3

      @@DeezNutz-ce5se you can't just quit the military.

    • @user-uc2qy1ff2z
      @user-uc2qy1ff2z Před 9 měsíci

      ​@@awgunner429you can hide your invention and patent it later.

    • @IntegerOfDoom
      @IntegerOfDoom Před 9 měsíci

      You confused "can't" with "shouldn't" a mistake I see far too many make.@@awgunner429

    • @marcusaurelius2013
      @marcusaurelius2013 Před 9 měsíci +1

      @@awgunner429 Then he should've kept the idea to himself until he was out of the military.

  • @DanielScholtus
    @DanielScholtus Před 9 měsíci +3

    If the angle required is not too strict, you could design a Y connector that takes light from 2 sources into one outlet, then just loop that outlet into one of the intakes. That way you have one intake free to kick it off and any light will just go on and loop, without the need to connect/disconnect anything.

  • @borispasternak2356
    @borispasternak2356 Před 8 měsíci

    I like how you also actually explained the technology behind the sponsor's product, you know your audience!

  • @noahtemple8312
    @noahtemple8312 Před 9 měsíci +1

    The idea of trapping light in a mirror room has toyed with my mind since I was about 8 years old. This video MADE MY DAY!

  • @westonding8953
    @westonding8953 Před 9 měsíci +6

    Wow! I knew how fiber optic cables worked but it did not occur to me to “store light” but on second thought I figured it would dissipate at some point because getting 100% percent “efficiency” just seems impossible.

    • @Dumbrarere
      @Dumbrarere Před 9 měsíci

      Seems? It genuinely is with our current level of technology, because it breaks the laws of thermodynamics. As with everything else made by human hands, there are expected losses with fiber optics. To send a signal extremely long distances, you need to make use of repeaters placed at equidistant intervals, and the loss of any one of these repeaters will disrupt the signal entirely (they are quite fragile and prone to electromagnetic damage from solar storms apparently). While it is theoretically possible to send a signal through an infinitely long optical cable (say one from an earth base to the moon or a geosynchronous satellite), you'd need an absurd number of repeaters, and it gets exponentially more difficult to keep the signal intact. I'd dare say, it becomes quite impossible after some point, as it's just not practical, nor worthwhile.
      At current, lasers are being developed and used to handle optical communications at extreme ranges. NASA tested one back in 2021 with the Laser Communications Relay Demonstration (LCRD) mission, and the technology is currently used by Starlink and a few other examples.
      That said though, he does say that while impossible, the concept still has uses.

  • @goodness6664
    @goodness6664 Před 9 měsíci

    Love what ur doing with changing the thumbnail to see the results vs the original

  • @mikepembo8297
    @mikepembo8297 Před 9 měsíci +1

    Im a network consultant so much of this is Knowledge ive already got, but wow, I never thought to test an SFP with a multimeter! Very good idea!

  • @deepakcs2797
    @deepakcs2797 Před 9 měsíci +4

    Love your videos❤️❤️❤️

  • @gonun69
    @gonun69 Před 9 měsíci +73

    During the Apollo missions they left reflectors on the moon. They then shot a laser beam from earth at it to measure the distance to the moon very accurately. What they have effectively done is storing a beam of light for about 2.5 seconds.

    • @nkronert
      @nkronert Před 8 měsíci +9

      A long time ago someone actually suggested that it would be possible to store up to a gigabit of information by modulating the laser beam shot at the Moon, decoding the returned light pulses and resending them immediately. A gigabit was a lot of information at the time😊

    • @sitproperlywhilewatchingph423
      @sitproperlywhilewatchingph423 Před 8 měsíci +1

      ​@@nkronertso storing the info by sending it back and forth ?

    • @nkronert
      @nkronert Před 8 měsíci

      @@sitproperlywhilewatchingph423 you send it to the retro reflector on the moon and catch the returning signal, process it and send it out to the moon again.

    • @person8064
      @person8064 Před 8 měsíci +1

      ​@@nkronert that's the principal behind harder drives; they use wifi signals bouncing around the atmosphere to store information

    • @nkronert
      @nkronert Před 8 měsíci

      @@person8064 can you elaborate on that please? I've not heard of this before.

  • @Dudleymiddleton
    @Dudleymiddleton Před 9 měsíci

    A brilliant insight into fibre optics!

  • @HelloKittyFanMan.
    @HelloKittyFanMan. Před 9 měsíci

    Interesting video, James, thanks!

  • @talayoki6989
    @talayoki6989 Před 9 měsíci +3

    You explained this concept better than my physics teacher did when I went to school.

    • @dvoiceotruth
      @dvoiceotruth Před 9 měsíci

      RIP physics teacher

    • @talayoki6989
      @talayoki6989 Před 9 měsíci +1

      @@dvoiceotruth first of all, she is alive and her child is younger than me and second, the equipment we had for experiments was made in USSR. I graduated from gymnasium 4 years ago. This concludes that our schools are still broke.

  • @billiop
    @billiop Před 9 měsíci +4

    We learn about refraction and TIR in class 7th or 8th in India
    But saw the fibre for the first time like this..... beautiful ❤

  • @tomholroyd7519
    @tomholroyd7519 Před 9 měsíci

    Very effective demo.

  • @DeadBryan
    @DeadBryan Před 7 měsíci

    Great optical fiber cable introduction

  • @anzaklaynimation
    @anzaklaynimation Před 9 měsíci +6

    It is the experiment I imagined in sixth grade when I was first introduced by optic cables in my computer science class. I think you performed the experiment for me.

  • @spudhead169
    @spudhead169 Před 9 měsíci +7

    Light changes speed through different mediums. Not sure if this would even be possible but a hypothetical material that slows down light to a literal crawl. Then you could "capture" some light from one place and let it out somewhere else.

    • @BriShep123
      @BriShep123 Před 9 měsíci +4

      Isn't that exactly what Lene Hau did?

    • @spudhead169
      @spudhead169 Před 9 měsíci +3

      @@BriShep123 No clue, that's a name I've never heard before, but you've given me something interesting to research.

  • @clizardia
    @clizardia Před 9 měsíci

    Amazing. I always wondered about this.

  • @labibbidabibbadum
    @labibbidabibbadum Před 5 měsíci +1

    I was hiding behind the couch when you shot that powerful torch into the fibre .
    I was worried you would send the beam both ways at once and make a particle accelerator, and when the beams met they would produce a black hole and obliterate the earth.
    But you must have got the angle just perfect to only send it one way.
    Well done... talk about phew!

  • @Jagdishtemkar1
    @Jagdishtemkar1 Před 9 měsíci +21

    The speed of light is just unfathomable 😮. Even after so many reflections, and a long fibre cable, the pass through after he connects the laser still seems instantaneous.

    • @Welgeldiguniekalias
      @Welgeldiguniekalias Před 9 měsíci +3

      Speed itself is unfathomable, since motion is always relative to your point of reference. If the universe is expanding at the speed of light, and you were to pick one point on the edge of the universe and then move towards it at the speed of light, keeping the distance between yourself and the point of reference constant, at which speed are you moving away from the opposite side?
      Physics hurts my brain. I'm glad I'm just a salesman who needn't worry about such matters.

    • @katrinabryce
      @katrinabryce Před 9 měsíci +4

      And in computer therms it is actually really slow, 30cm/ns. In a 10Gb cable, the individual pulses of data are spaced 3cm apart as they move down the cable.

    • @dugebuwembo
      @dugebuwembo Před 9 měsíci +5

      Light can travel 7.48 times around the entire earth in a loop in 1 second.

    • @MeppyMan
      @MeppyMan Před 9 měsíci +6

      And yet it’s so slow when you start to zoom out to astronomical scales.

    • @SumitPalTube
      @SumitPalTube Před 9 měsíci

      Yes, it takes millions and millions of years to reach from the furthest corners of our universe. FTL travel is the holy grail of science fiction.

  • @h7opolo
    @h7opolo Před 9 měsíci +7

    4:30 makes me think you might be able to see a faint glow from the coil of fiber if you look at it in a completely dark room.

    • @TiSapph
      @TiSapph Před 9 měsíci +2

      You can, though those thick jacket fibers block it pretty well. With the thinner 900um jacket fibers it's much more visible.

  • @DGRIFF
    @DGRIFF Před 9 měsíci

    You're sharing basic science from 100 years ago with the public. Nice.

  • @tayserbinjafor1569
    @tayserbinjafor1569 Před 9 měsíci +1

    That's very important to have a best idea of total internal reflection.

  • @harrisbinkhurram
    @harrisbinkhurram Před 9 měsíci +3

    My Fish Aquarium always does this, and its really bright.

    • @nuLabi
      @nuLabi Před 9 měsíci

      but it would only fully reflect from the surface of the water

  • @MarkBarrett
    @MarkBarrett Před 9 měsíci +6

    Holy crap! I've been theorizing for a few years about sending light through a coil, in a loop.
    This method could actually do it!

    • @MrT------5743
      @MrT------5743 Před 9 měsíci +3

      You missed inventing this technology by about half a century. The first fiber optic cable was invented in the 1950's.

  • @chrismayer8990
    @chrismayer8990 Před 9 měsíci

    Nice Video! Thanks!

  • @SxyRikku
    @SxyRikku Před 9 měsíci

    Amazing work. ❤❤❤

  • @frederickingrando5469
    @frederickingrando5469 Před 9 měsíci +5

    On top of being an incredibly informative and brilliantly interesting video as everyone of your videos always are that BEAR device is cool beans!

  • @heyspookyboogie644
    @heyspookyboogie644 Před 9 měsíci +6

    How can it be “perfect” reflection in water, glass, etc if you can see it? Wouldn’t that still mean there’s losses and it’s less than 100%?

    • @wjh31
      @wjh31 Před 9 měsíci +2

      The reflection is perfect, but as it travels through the bulk of the water there's still a small amount that gets scattered which allows the beam to be seen as it passes the water.

    • @Oobservatory_X
      @Oobservatory_X Před 9 měsíci +1

      Reflection total 100% but the water is scattering the light and changing its parth as a result you see light beam

    • @humanbeing4995
      @humanbeing4995 Před 8 měsíci

      The surface is perfectly reflective. Where is the light coming from and ending up? Hope this answers your question.

  • @Ayuori
    @Ayuori Před 9 měsíci +1

    Could you use that to see the speed of light if you just had a long enough roll of that cable?

  • @maxdon2001
    @maxdon2001 Před 9 měsíci

    Great video!

  • @malcolmgeldmacher4998
    @malcolmgeldmacher4998 Před 9 měsíci +3

    Since there’s an “acceptance cone,” ( 3:20 )couldn’t you have one fiber supplying light next to the end of the loop? Would that technically build up how much light was in there?

    • @u1zha
      @u1zha Před 9 měsíci +1

      Yup I believe that should work, good idea for a follow up video

  • @alexandergrace
    @alexandergrace Před 9 měsíci +4

    I've always wanted to build my own home and use even cheaper plastic fiber optics that run from outside my house to the basement and center of the home to give off light during the day. Always thought how cool it would be to light up my house with the sun rather than electricity. And as i typed this, i thought why not have a centralized light source that can be "dampened" rather than individual lights in every room. Anyways, friday night thoughts are done. lol

    • @BimotaMoon
      @BimotaMoon Před 9 měsíci

      This is worth watching a video on :D Anyone know of cases where fiber-optics are used with the sun being the light source?

    • @geli95us
      @geli95us Před 9 měsíci

      @@BimotaMoon You'd need a lot of cables to cover enough area to light up a room, and at that point, why not just use a solar panel?

    • @xGOKOPx
      @xGOKOPx Před 9 měsíci

      There's a town in Norway I think that's entirely in the shadow of a mountain for most of the year, they've placed giant mirrors to shine sunlight on the central square because mental health of inhabitants was negatively affected by the constant shadow

  • @GrowingAnswers
    @GrowingAnswers Před 9 měsíci +1

    That’s what I work with daily. And you even had an SFP. That’s a bend insensitive type of wire meaning it’s less prone to loss with tighter bends. The fibers that travel kilometers are usually not bend insensitive due to cost and usually need to maintain a bend radius not smaller than a pop can. The light that travels through them is IR that is outside the range cameras can see. Some people don’t realize this and look into an open fitting thinking there is visible light. This is dangerous because the light is invisible yet high intensity and at the least will cause permanent blind spots in your eyes. What’s kind of crazy is the connectors must be impeccably clean to minimize loss. For this we use handheld microscopes and tip cleaners. Dust specs even 1/10th of that 1/10th “human hair” sized fiber will cause loss. Which can be easily picked up from air exposure. The style you have with the blue connectors are flat faced tips. The style more commonly being used today are green (apsc) which have slanted faced tips. This is to reduce reflectivity back into the fiber, upstream. Think of it like a window you when look outside. You can see some of your own reflection in the window depending on light conditions. But If look through a window off angle your own image isn’t directed back at you. One of the downsides to slanted connectors though is that when they meet through a bulkhead, they exert the pressure (psi) of the standing foot of an elephant against each other. The slants cause a slight diversion and the 1/10th human hair sized openings on the connectors tend to eclipse each other which is why mechanical connectors (splices) are inherent to more loss than fusion splices.

  • @piconano
    @piconano Před 9 měsíci

    You make science fun.

  • @slo3337
    @slo3337 Před 9 měsíci +3

    Even if the trapped light did not dissipate, you would only see a few nano seconds of it when you let it out. So you probably could not see it anyways without a really really high speed camera.

    • @psirvent8
      @psirvent8 Před 9 měsíci

      What about the Slo Mo Guys then ?

    • @BimotaMoon
      @BimotaMoon Před 9 měsíci

      A detector would be more effective in this case... (just now realizing thats all cameras are... photon detectors)

    • @DrDeuteron
      @DrDeuteron Před 9 měsíci

      Maybe a pulse yag laser doubled to green. That’s a megawatt for a few nanoseconds per pulse.

  • @JavierAlbinarrate
    @JavierAlbinarrate Před 9 měsíci +3

    6:28 there was no need to show the video of your last colonoscopy... 😉

  • @TruggyDriver69
    @TruggyDriver69 Před 9 měsíci

    Another awesome video.

  • @moroniafrifa614
    @moroniafrifa614 Před 9 měsíci

    That's incredible!

  • @kovacs88
    @kovacs88 Před 9 měsíci +15

    If 100% of the light is reflected off the surface of the water, we wouldn't be able to see it from above.

    • @ceray4312
      @ceray4312 Před 9 měsíci +13

      we only see the light that has scattered from the laser hitting water molecules. Thats how we can see lasers and so that dosent mean its not reflecting 100%

    • @westonding8953
      @westonding8953 Před 9 měsíci

      We would not be able to see the laser in that case.

    • @pierrelabrecque8979
      @pierrelabrecque8979 Před 9 měsíci

      @@ceray4312 can the way we observe light in waveform be analogues to only being able to see waves on a pond in contrast to the surface only. Just observation and no instruments? Or should I begin a medication regiment?

    • @anurimapal7768
      @anurimapal7768 Před 9 měsíci

      I think it's called Tyndall effect

    • @ceray4312
      @ceray4312 Před 9 měsíci

      @@pierrelabrecque8979 tbh I dont really understand what you mean by 'surface only', but firstly we dont see the waveform of light with just our eyes and secondly whether light is a wave or particle is up to debate (look up double slit experiment) so its not like water

  • @c_sea1n
    @c_sea1n Před 3 měsíci +3

    hello everybody my name is Markiplier

  • @jbirdmax
    @jbirdmax Před 9 měsíci +1

    Absolutely LOVE the shirt!

  • @arkvoodleofthesacredcrotch6060
    @arkvoodleofthesacredcrotch6060 Před 9 měsíci +1

    Maybe a giant sequence of loops so there are less intense bends, and not sure what options there are but a more reflective shielding could maybe help. Problem is, that much cable and special made would be a huge cost for not a lot of return seeing as how light is so fast that the difference would be miniscule if even measurable at that scale.

  • @KFCMmuc
    @KFCMmuc Před 9 měsíci +2

    Although it is a fun thought experiment, I think it is pointless to even try for another reason (but also connected to the lightspeed). Not only are the internal losses (cumulatively) so high that the energy dissipates almost instantly after killing the source, but I do believe that you physically cannot close the loop fast enough after shining light into it to even suggest there was a "stream of light circling in the loop (me paraphrasing)". The time you take to straighten out the fiber is something close to eternity in lightspeed terms. So it is safe to say that the optical fiber has gone dark beyond any all-day means of measuring long before you switched the lamp off at 8:26 ....

    • @preverted
      @preverted Před měsícem

      Don't switch the lamp off then...just keep the light shining and release the bend. Might that work?

  • @LiborTinka
    @LiborTinka Před 9 měsíci +1

    Could you make a video about pentamirrors and how they work compared to pentaprisms? Refraction is also very interesting phenomenon - note that the angle of refraction actually depends on wavelength and this is why optical prism decompose white light into a rainbow. Little people can explain why this happens actually. The physics behind this phenomenon is interestingly tricky to explain and understand. The refraction angle in air/glass interface also changes wildly outside visible spectrum - this is one reason why windows are transparent for visible light but partially reflect infrared and UV light.

  • @luvocean1
    @luvocean1 Před 7 měsíci

    That was very interesting.

  • @DrRiq
    @DrRiq Před 9 měsíci +1

    Great video

  • @fazergazer
    @fazergazer Před 9 měsíci

    ❤you can tell your viewers are passionate about physical science and accuracy, and that you encourage thought and discourse❤

  • @rafaelperalta1676
    @rafaelperalta1676 Před 9 měsíci

    I saw this once when our home wifi was being fixed. The guy shone a laser light through the fiber optic line to find the faulty/broken parts of the wire. The red light in the faulty sections can be seen close and far. It was amazing to see it in person.

  • @stevejobs5
    @stevejobs5 Před 9 měsíci

    Where do you get that reflective film? What is a key word I can search to find it?

  • @Bystander333
    @Bystander333 Před 9 měsíci

    Reminds me of a concept called "slow glass" from an old Sci-fi series of short stories (Bob Shaw).
    Basically it took decades for the light to travel through the glass, so people used them to replace their windows.

  • @ElijahPerrin80
    @ElijahPerrin80 Před 9 měsíci +1

    I remember as a kid thinking about a light battery that is a reflective sphere, but I always realized that even if you could make a perfect sphere, you always have a way to get the light in, and that would be enough to lose the photon... I always wondered tho if the photons would become one photon that is much larger or higher energy and how do you align the photon to exit the light battery in a controlled manner?

  • @sirtajali5841
    @sirtajali5841 Před 9 měsíci

    he made amasing vedio for every my imagenation with great explanation

  • @BakersTuts
    @BakersTuts Před 9 měsíci +2

    What if the fiber core had some sort of shallow y-fitting where you inject it from the branch, and then the main line is the actual loop?

  • @walkman1269
    @walkman1269 Před 9 měsíci

    I work with fiber cable too. Each splice or termination introduces loss and reflections. Much more than a long section of cable.

  • @davidg4288
    @davidg4288 Před 5 měsíci

    We had really long rolls of optical fiber at work years ago, maybe 50 kilometers. It was unsheathed and spooled in a plastic box so it wasn't that big. We used it for testing fiber communications equipment in a lab with latency like you'd get once installed in the real world. We never tried looping it but I bet the lasers would not have made it around those spools too many times. It'd be detectable with equipment (optical time domain reflectometer) but not visually.
    Some of the equipment also contained sections of doped fiber that were pumped by a laser of a different wavelength and those could actually amplify the light in the fiber without converting it to an electrical signal first. That would have been interesting to connect in a loop but we didn't. Most long haul laser communications gear will power down the lasers if they don't see a valid signal, that's to protect the eyes of the technician who unplugs the wrong patch fiber and looks at it.

  • @British89
    @British89 Před 6 měsíci

    how long would the cable need to be for there to be a delay from turning on the light to it shining out the end

  • @abhinavmario
    @abhinavmario Před 9 měsíci

    You are awesome broski

  • @gregntammie
    @gregntammie Před 9 měsíci

    I thought the bend radius on fiber optic cables had to do with them breaking, but I guess the signal is severely degraded first.Thanks, Great video.

  • @CharlieTheNerd91
    @CharlieTheNerd91 Před 7 měsíci

    My ISP literally just routed a naked optic fiber into my apartment, hot-glued it directly onto the wall and around the doors, and plugged it in, no shielding whatsoever, it also has a bend like the one you made hardwired into the receiver piece AND my cat chewed on it a few times with visible damage to the core haha, but miraculously I have a working gigabit connection and no latency issues etc.

  • @brianegendorf2023
    @brianegendorf2023 Před 9 měsíci +1

    To store the light in a confined space, you need to make it so the loops essentially refresh the light. Its not enough to have total reflectance in the cable..SOME of the light has to be leaked out and back in again at set intervals in the cable to refresh. The "lost" light has to "rejoin" light that had previously lost some of its luster to add up to brighter light. Think of it like a helix. you need an inner and outer carrier area of light in the optical cable that trades light back and forth to maintain brightness.

  • @LiborTinka
    @LiborTinka Před 9 měsíci +2

    This also reminded me of Dr. Mallet's time machine made of looping laser light (it supposed to 'stir up' spacetime enought to connect the moment machine has been turned on with the present moment...).

  • @PineapplePerson1
    @PineapplePerson1 Před 9 měsíci

    One of my friend's dad is a fiber optic worker and one time he let us learn and fuse the glass. It was way cool.

  • @danielmoreira1003
    @danielmoreira1003 Před 9 měsíci

    Amazing. Thanks

  • @Solotris
    @Solotris Před 9 měsíci

    LoL tomorrow I have physics exam and question on these topics is going to be asked. What a perfect timing this video landed on CZcams!

  • @battokizu
    @battokizu Před 5 měsíci

    Wow that's actually amazing that it's generating a voltage with the transceiver and nothing else. Light really is something else.

  • @anueyiagumichael8188
    @anueyiagumichael8188 Před 9 měsíci

    Good job. I like this channel

  • @Mrmoe198
    @Mrmoe198 Před 8 měsíci

    I wonder how long of a fiber optic would you need coil dock on that table, before you could see a measurable delay (measurable enough for people to notice) between when you attach one end to a laser emitter and when it comes out the other end?

  • @theotherguyhere
    @theotherguyhere Před 9 měsíci +1

    I really love your videos, you have a talent for explaining things clearly

  • @DEYGAMEDU
    @DEYGAMEDU Před 9 měsíci

    love your experiment from India

  • @markmuller7962
    @markmuller7962 Před 9 měsíci

    What's the most reflective material that we know of?

  • @mathijszwier6026
    @mathijszwier6026 Před 9 měsíci

    I like how you wiggled the bend in the fibre optic cable to make sure the photons would enter it

  • @daynosdr
    @daynosdr Před 8 měsíci

    whats the gizmo for connecting to a laser pointer called?

  • @0neIntangible
    @0neIntangible Před 9 měsíci

    Use effects similar to kaleidoscopes end to end to break up wavelengths into different diffraction patterns, and then recombine these same patterns at the other end, and test & compare for echoes, delays or reverberation of light speeds end to end, within the lengths of cable(s).

  • @gigabooga
    @gigabooga Před 7 měsíci

    Can you focus an image into the optic cable and then use the other end as a projector? The light version of tin can telephone.

  • @heroclix0rz
    @heroclix0rz Před 9 měsíci

    Could you hook up an oscope and probe before/after a long loop to see the delay?

    • @baptistedelplanque8859
      @baptistedelplanque8859 Před 9 měsíci

      Delay is just length divided by propagation speed:
      Length divided by (speed of light divided by refractive index) = L*n/c
      The refractive index makes the light n times slower, or from another mental point of view the length apparently n times longer (with light still propagating at c)

  • @Chesterton7
    @Chesterton7 Před 9 měsíci

    Very interesting.

  • @onmyworkbench7000
    @onmyworkbench7000 Před 7 měsíci

    During the cold war on the West side of the Berlin Wall in remote areas of the wall the U.S. installed a Fiber Optic X,Y grid that was buried in the ground it was used for vehicle detection. The way it worked was that the Fiber Optic cable was laid out in an X,Y grid many meters wide that followed along the wall. The points where the X fiber crossed over the Y fiber was a grid reference point such as X1/Y1, or X10/Y20 , Y50/X32 and so on. The cables had light running through them all the time and the light level that was going in and was coming out of the cables was measured. If a vehicle drove over the cable the compression of the ground caused a reduction of the light level through the intersecting cables at or near the grid points where the vehicle was passing over the cable allowing the location of the vehicle to be determined using the grids closest reference points.

  • @michaelme4028
    @michaelme4028 Před 9 měsíci +1

    Probably coupling in a signal into the loop and coupling out a signal for view on an oscilloscope could be an interesting experiment. But the fiber needs to be long enough for a decent delay and short enough due to the attenuation in the fiber.

  • @DanielDelRey.
    @DanielDelRey. Před 9 měsíci

    I wondered this too when I fusion spliced a fiber optic strand in a ring. Didn't think of introducing light at a bend